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Yuble 1 Progrommer productivity

Souree Wnes pee

CQrpaeiizetion prorisaer doy
s Unit desigy, programming .
- dclmf.'_ 1. and Lesting [i%]
AR professional 47
SWith librarian support . - - 43
B Entire team 35

pii;be‘x"J"l al work, which includes system desiyn and documens-
w@ion, bul noet Ghrarian suppoert, The third row inclwles all pro-
gramming o libravian support, The Iast tow presents the prod-
uctivity-cf the eatire team on the compicled system (cxcluding
requirernents analysis). '

Team exparience and conchusions

he chiof programmer team approach- appears to be desirahle
for the type of project discussed in this g-dpu borause nrogram-
mer eificiency was substantially imuroved, The gualiiy of ihe
prograiming was demoonstinted by nearly error-free scceplance
testing with real data, by successful operation after delivery, ani

hy its aceeplancs by systam users.

The ninrsotion banh syswin win gpecified, developed, and
tesiod dunme o 132 wman-month projoct, The team, iq this ax-
periment, was o rebiively experizossd ook, and it gocfprned
at an above-average lovel, For,.:ﬁai'lllc' vesuits of t,n, experi-
ment with results For comparable projects ihat wera m‘gamzed
maore Cz'mv-::s:leonal]y, wir balievs hut '..:'lic.:l proprammers teams
applving the methods us—scnbed in s paner shoukl proba-
bly be aul{, to double normal prodt u.uv;t/. Ta add the
quaiity of the comploted programs should he suporior o con-
ventonaily produced p ams In terms of Jowear lovels of
217015 remaiaing,  seif-documentation, and ease of mainte-
nance,

Arnother valuable expeovience of the chiel progiammaer {eam ap-
b i

p':'oach was 115 managead n!:w The team had a lower than usual

ratio of professionabio-support personnel, Becanss the number

caiions problems were {i Broaun-
wencie aboui (he pregress ol th
of
involvement in 1t and because tie fechnignes used (particularly
-

of people actually Jdoing Lnnfwatoum WIOTR WS c.rm%f!, codauniini-
awmiy reduced, The 1

mer was more Knowicdpeabl ho work

LA progiarming manngoers g:ncrmiy are hacause s direct

the Programmiug Pi‘cd_:.!r‘t‘iun Likvary, top-down prouramming.,

and siruciured programming) made the stenis of the work highly
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visible and tinderstendabie. This knowledee allowed both him
and his miagement o react {0 probdems sooner and more effec-
tively than might have been JL case had thiey hzen more de-
tuched Tram the work, -

The relativeld emall size of the team wede it highly responsive
(o changs, Vhe oviginal funciions) specification weni tirough six
revisionsi.yet fr was nousible 1o adidnt nzztuly to mugor changes,
even H‘.O" oceurrinp afer propramnueng owes well along. bme”
arication achicved throueh the consisient apolica-
programming, and the

proved oo
tion of toy Sdenwn prograrning, structured
pet all ((_hu' ipuicd to team sdaptaibility,

A tunetionst organization was appiied both within the team and
to {ite projcct organizaiion us a4 whole, Within the teum, the

1

functional distribuiion of work allowed toam members (0 Con-

cenirate on if'-rrse aspeets of the job for which they were best -

cquipped and moest prodoctive. At the nroject level, the func-
tional ovga ion allowed the chiel prow wr o conceniate
on techrical progress of the programniing, hoih internally and in
Bisrolations with the system usars. A very eifertive reistionsnin
was estnbhshed Getween the chief preovammer and the project
a0 problems arese from the dust interface with the
sad the responsisig h of the
4 when 1h‘.=, chief }uL was off
cesf i lhr:. pro-

ii

muandger, a
users —who fully under
mangers, During 2 porio
of the prasnct,

iect.

The tum o

career
PrOSVAMITATS 10 CODLN

Downward, the tesm approach ofiers progranuning related
clericz] oprorioaities to ponprogramming persannel. The team,

'n e nmmuc..vc it a gzci freil CRRICE

H

1 1

as orizinally consiitined, included a [.“.z'o-"_r:-‘zz:*n'xr‘r techinicion for
the clerica! function, but two probiems wrowe with this approacii.
The work did not regidire a programmer lechnizian becanse the
reL procedures were well enovgh do fmu! 1. it nO proaramming
Lnovledrss wus required to opearate it Alzp, neither librarinn
suppori ror secretorial support became fuli-time jobs on the
project. We, therefore, combinzd the two uauuums and trained
a secretasy to perform then, With two weels of on-the-job train-
ing. the secretary was capable of acting as ha_n'zn';an by vging the
prL. Combining the two iohe aiso worked well frem a work Joad
standroind becpuse whan programeoing work was heavy then
documeniaiion was lizht, and vice versa.

The progmmming technicues and standurds used by the team to
erhance productivity and visibility also worked uc. planned. Top-
down propramniing was similarly seccessful, System logic for
one of 1i1¢ major programs fan correctly the !‘u‘;t timie and never
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reduired w change as Lhe program was expaaded Lo its full size.
This was helpiud in de Ea:lf_‘c p, since proprms usually mn w
compmletion. and 1h_ vare Militres were readily traceable o nowly
added tunctions, Top-down programming slso alleviated the in-
tertace problams aormally associited with muitiprogrammer
projects, becauss interfuces were abways delined and colded be-
fore any eox !m" mrmmns that made use of the interfaces.

The Programming

Pmdm-ii(m Cibracy run by the lborin-sec-
tary achieved its objectives of remoyies maeny of the alerical

aspects of hregea HnIng fre i the programmear and of making the
aroiect ere vis : i and, hopco, more mnnasoablz T adso en-
couraged mocm';w"ty of the prognims ard mede or-dowit pros

TR ’r;’ actical mid effeciive.

1

Wiereas the experiment was sucoessfiel, there are suil soine

unansweied goesgtions and umnl"-*u nrobicms, Most obvious,
perhaps, 13 whu%hcr t..:,,mpr-,uu,n an be extended o lorger pro-

_;-“ cls. The bast estin ie thine is that iU prohably com, bat it

ieeds to be tried, The mnmqf i zmm'ozwh wonld be to begin o pro-
ject with a single high-teve! towrm Lo do overall system desian and
nucleus development, Afier ihe nucleus 18 functioning. progeam-
wers on the orginn! tleam could become chigd fzrug;run}rimi's omn
teams developing major subsystems, The ﬂrin‘nai team would
asuine contrel, review, \';.-.lid:‘ar?on :m(i !.cst I Uatu 3 1 ner-
o ntest T
procoss connd
s
cess wonld fnerenae tie
preaci. | (3 HOL DSCeIRAN },, irue
rent and inteprition, and it may ll!:f., even less tume. o any
rase, the risk s maﬂd be substentially reduced hecause of the bet-
ier visihility and management control in the teien mathodologs

ad
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f\ secoud mujor guestion concerms leam comgosition and triin-
g, Bocauss zh., t am is a4 ciose-knit anip prodaciog a lavge
fmn oat a faster-than-uspal paes, close cooperztion aod :
comrmmication are esszaiiab s, therelore, dosivable that tzam
rmambers be exparienced profossionals iratisd in the wechnigues
deserined. Altheugn a team may inclode ene or possibly two
less experiencod programimaents, I;‘srﬂer en would force the
chiel programm of his time in
dataiied tral and Sinery
dustivity, Gp tntion mav
WOy IR NroSram malnienanes or {
aisting svstems before placing them on :f.;\_ms phat are develop-
ing new 3ystems,
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chief programmer is responsible for tvam manzeemcot and for
techrical representation of the project te a customer zndd to his
own menazemeni. Pheeafose, management ability and expern-
ence are necessary quzitificaticns, A chicl prosranimey inesl alss
passess the creativity and drive te mske mj;a'.'ﬁ:“xrf dmc.d
contribuifzns ef s own and o assist oihe

making thoir contribulions, This essential

I
My

r"r{;.y spoenrs i the same individoeal Teos the bso 0
testi r';: hauld probhbly if‘ crns.p"'c ST ;«uf of the stlection
- T b
L

#

ne final c;:.sé.-;i.if.m u,; i -
nrogiRmmers ars vwiling to acoent the technion
ge r'a! chnilerpes of burps projects with faw people, }.,.‘
chief projrammers nave responded fo i‘v» civbonges mid haove
fm:m; ihat it lsads to & depree of saiisfsoiion that is bard to
match,

rize, fhere is litke @ the ohisl proprasumer ieam or-
H ] & §

gan “”?«1% oi: an {i i ﬂzmi:)!ﬂg;—' {hat hus 1 of heep praviousty ivied,
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1, Programming Strategy
_ Recent work has advanced the techniques involved in the program.
producticn process. This better way is based on the techniques of:
o  Structured Programming. -
0 Top Down*Prog;amming
o  Programming Support Libraries o
Thé:use of these tééhn&ques results in improvements 1in manageability,
quality, productivity, and maintainability. A discription of the

techniques and how each contributes to these improvemeats follows.,

1.1 Structured Prdgfammingk )

Structured progfamming is based on the méthematically proven
Structure Theoremi which states that any proper program {a program with
one entry and one exit) is gqu?valent to a program that contains as
logic structures only:- - " )

0 sequence  of two or‘mofe operations

© conditional branch to one of two operations and return

(IF y THEN b ELSE e)

-o' repetition of an operation while a condition is true

(DO WIIILE)
Each of the three figures itself Tepresents a proper program (see
Figure 1). A large and complex program may then be developed by the
appropriate nesting of these three basic figures within each other.
The logic flow of such a program always proceeds from the beginning
to the end without arbitrary branching. Where only these structures
are used in the programming, there are no unconditional branches or
statement labels to wﬁich to branch.

Figure 2 illustrates traditional code and structured code.

Structured programming reduces the arrangement of the program logic
to a process like that found in engineering where logic circuits are
constructed from a basic set of figures. As such, it representa
a standard based on & solid theoretical foundation. It does not require

ad hoc justification, case by case, in actual practice.

1 Original form, Bohm and Jacopini, Comm ACM, May 1966, See also,
‘Millse, Mathematical Foundations for Structured Programming,
F5C.72-6012, February 1972, '



Any proper Program is equivatent to g program structure which contains, at mast, the members:

- Sequence of two 6peralions:

———p Sequence

Conditional branch 10 one of two operations ang return:

IFTHENELSE

Operation repeated while_'a condition is trye:

DOWHILE

Figure 1@ Structure Theorem



Several practices are included'as a supporting part of the
"“technique, For example, strict attention 1is paid to the indentation
of the logic structures on the printed page so that logical relation-
ships in the coding correspond to;physical position on the listing., (See
Figure 2). Thus, ‘a pictorial represcatation of the logic is gained from tha
indégtriion. Anothqr practice is that_of.segmenting code into
reasonable amounts 6f loglc that are each easily understandable, Each
segment of code (whose internal oﬁerations may be any combination of
‘the basic logic structures) must itself represent one of the basic
logic structures. Thus, each code segment becomes a logical entity
to be analyzed, coded and re;d at one time, (éee Figure 3},
' High level languagés can be made almost totally self-documenting,
For assembler level languages, macros provide the basic logie structures,
giving these languages the réadébi}ity and self-documenting attributes
of highér level languages, The us- of the basic logic structures
coupled with indentation and segﬁentation rules, obviates the time
consuming preparation of flow charts.

Simple extensions to the three basic logic structures are allowed,
These do not affect the spirit of structured programming, but do result

in more efficient use of computer time and storage.

1.2 Top Down Approach

Prior to actual implementation, functional requirements and software
architecture will have been developed and described in the documented base-
lines of the definition and design phases,

Traditional software development has evolved as a bottom up
procedure where the lowest level processing programs are coded first,
unit tested, and made ready for integration {see Figuré 4). Superfluous _
code in the form of driver programs 1is needed to perform the unit testing
and lower levels of integration testing. Data definitions and interfaces
tend to be simultancously defined by more than one person and often are

inconsistent, During integra%ion, definition problems are recognized,



 label m

‘label

=}

label r

label g
label v
1§bel k
label £

‘ldbel ¢t

label a

label y
label w

label y

IF p GOTO label q

IF w GOTO label m

L function

GOTO label k

M function -

GOTO label k

IF q GOTO label ¢

A function

B functton

C function

IF NOT r coTo label s
D function

GOTO label p

IF 3 Ggoro label ¢

E function :

IF NOT v GOTO label k
J function

K function

END- furction . !
F function

GOTO label v

IF t GOTO label a

A function

B function _

GOTO label w ;
A function

B function S
G function

IF KOT u GoTO label y !
H function

IF NOT t GOTO label y

I function

I¥ NOT v GOTO label k

J function

GOTO 1label k

TRADITIONAL
= s 2 VAL

FIGURE 2,

TRADITIONAL AND STRUCTURED CONTROL CODE

IF p THEN
A funcrion
B function
IF q THEN
IF ¢ THEN
G function
DOWHILE y
H function
ENDDOD
I function
(ELSE)
ENDIF
ELSE
C function
DOWHILE r
D function
ENDDO
IF g8 THEN
" F function
ELSE
E function
ENDIF
ENDIF
- IF v THEN
J function
(ELSE)
ENDIF
ELSE
IF w THEN
M function

ELSE
L function

ENDIF

ENDIF
K function

STRUCTURED
e fbd)

-



IF p THEN
A function-

B function
IF q THEN

ELSE 3
€ functicn
DOWHILE r

D funciion

ENDDO |
CALL g~test
ENDIF
IF v THEN

J function

(ELSE)
ENDIF
ELSE
IY w THEN
M function
ELSE
L function
ENDIF
ENDIF
X function

FIGURE 3.

INCLUDE t-tegt

t-togt

IF t THEN
G function
DOWHILE u
H function
ENDDO
I function
(ELSE)

_ ENDIF

g~-test

IF s THEN

F funection
ELSE

E function
ENDIF

Segmented Code



tested again) to accommodate the changes, It ig often difficult to
_igolate a problem during the traditipnalAintegration cycle because
qf:the large number of possible sources, 'MahéééﬁQﬁf“ESdt?dlf&fﬁeH"ié}

{in;f}zzfiﬁaﬁﬁﬁfinévﬁaéﬂBE&EEéMEFd&EEEEﬁElfdeﬁeI-mentcxc{g,pgcagsej

. {there 1s no coherént:WGiéiBléwpréduct"until integratiéﬁq
S ' . T T et e T T . .

The top down-aﬁproach is patterned after the natural approach

In top dowﬁ, Structured programminé, the system ig organized into
4 tree structure of Seégnents. The top segment contains the highest level
of controlrlogic and decisions within the program, and either passes
control to lower level segments, gor identifies lover level segments for
in-line inclusion.r This process continles for ag many levels ag required
until all functions within a systenm are defined {n éxecutable code,

Many system interfaces oceur throuygh the data base definition in

addition to calling Séquence parameters, The top down approach requires

accompany the Corresponding levels of implementation. The quality of gz
gystem produced using the approach is increased, as reflected in fewer
errors in the coding process, The act of Structuring the logic calls

for more forethought, and the uniformity and single entry, single exit

errors,
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:quality increase realized by modularity extendg itself into the
,documentation.,,The quulér segments become natural units for
“documentation and for incremental learning of the System with a view
tdward maintenance and extension. Maintenance personnel begin learning
uabout the system”by reading the topmost Segment and continuing down

the various branﬁﬁcs of the trece. The segments themselves are essentially

self-documenting since the code in the Segments is an elaboration of

management control of the software development effort by providing
continuous product visibility, ySince_tﬁe‘dﬁﬁéldﬁiﬁé“é§étém-is uﬁderj
“going continuous ihteéf&f)&n;mfhé-system'Status is accurately refleéteq;

{through the contents of the system libraryiqi.e.,-éémpleteﬁess is

design proceeding down through a set of detailed Program specifications
was written prior to coding. This has alse been eliminated, Beginning

with the design specifications, the various iterations op the detail of

eliminating inconsistencies‘between Programs and thefr documentation

due to efther lingual misintérpretation or temporal non-correspondence,



Bottom-Up: X Begin

. ) - Acceptance

Start . ’ Test

Design] Code l Unit Test , Integrate : 5

Top-D : .

op-Lown Begin
Acceptance

Start est

‘ T
Design ' Code and Integrate j

FIGURE 5. Milestone Comparison



starting poinz while conventioﬁal implementation proceeds from as
many-starting points as-modules in the design. The single starting
ﬁqint does nor iﬁpl§ ‘that the Implementation muse proceed down the
ﬁierarchy in pzrallel, Some ‘branches iﬁténtionally will be developed
earlier than c:ther brﬁﬁches. For example, user or other external
interfaces might ﬁé develobed to permir carly training or hardwvare/
sﬁftware integ:ation.

In systenms with user intcrfaces, the user can interact with the
(functionally tneomplete) system much earlier in the development nhase.
This early interaction provides an Cpportunity to prepare user and

operator guldes top down (i.e., as user facilitieg are developed) and

to validate the guides. .7

1,3 Programmizp Support Libraries
A Programaling support library is a set of office and computer

Procedures desizned for use in a program development environment,

rfﬂé'principal céjectivé'of theilibfﬁryJis ﬁo'p;oyiﬁguééﬁéféﬁtiﬁuﬁﬁ:

‘to-date feprese:tations of the progréméiéﬁﬂ’tést data 1in both computer;

iand human rcadzhias fdrms;‘iThe design of the procedures permits the

clerical and recordheeping onerations associated witﬁ the programming
¢

to be isolated fronm the programmer, The library includes these

facilit{es:
o Update Procedures to store and modify programming data.

o Versiom Control to permit one version of a system td be used
as the maseline for the next. Sipce Program segments unfold
through the use of CALL's and INCLUDE's, {t ig critical that
code under development not be accidentally called or included,

o Automatis Indentation of Source Listings to improve readability,
This fezture 15 a characteristic of library support, since
1isting should be possible ingépendent of compilation,

o Office Procedures to provide visibility of the code .on hand

and to ensure successful operation of the library system.

m



o Creation of Dummy Program Segments to allow execution
of 'a program throughout development as soon ag the top-
most segment is available.
o Library Recovery Procedhgcs to provide backup and recovery
of libraries or library ségments.
.0 Housekeeping_?rocedures to allocate, catalog, restructure
- and main&éin the libraries.-
o Library Status Data to recor& unit ownership, size, specifi-
cation and%attributes which are ngeded te provide proper
library maiﬁtenance.
o Automatic pisting‘Bf current library;content.
. o Program Direétory and Cross Reference to show the hierarchical
- ‘ Structure of units in programs and to 1qentify macre usage,
called programs and fncluded code for maintenance purposes.
o Module and Function Sfagﬁs Data to provide visibility of progress
to management. The contents and status of segments are made
available. This data should Be correlated to the functional
capabilities of the program. )
o  Programming Activity Data recording, e.g., numbuers of statements
modified and delivered and numbers of transactions in the program
segmenig. i
The library provides a significanﬁ-aid to test and evaluation in that
the current operational software systeﬁ code is centralized to avoid ambiguity
of what 1is, and what ig not, valid software as well asg centralizing the
valid test program code. At every point in time, the overall system library
constitutes the current operational system. Consequently, considerable care
is taken to see that new segments and data item definitions have been properly
tested before they are added. This testing is carried out 1in development
libraries, in which segments are created as needed, exist unti] the units have
been testing and added to the system library, and are then purged. Considerably
more leeway is permitted in adding to a development library than {in adding to
the system library. For example, if a segment references a data item for which
it 1s not authorized, it cannot be addeﬁ to the system library. Such an
unauthorized access 1s permitted in a dévelOpment library, although the user is
warned that he has committed an apparent error.

11



2, Test Approach

Since thig segment wil] normally ihvoke‘or include lower level Segments,
code must exisgt forrﬁhe next lower level segment, Thig code, called

8 program stub, ﬁay be empty, may output a message for debugging
.purposes each time it jg executed OT may provide g minimal subset of
the functions required, These Sstubs are later expanded into fyll
functional Segments, which ip turn require lower level Segments,
Integration is, therefo:e, 4 continuous activity throughout the

development Process, During-testing, the systen €Xecutes the segments

added S¢gnents has Previously been integrated and tested and can be used
to feed test data to the new segments, For this Teason, most problemg
are localized_to the recentiy added code, As the new segments are tested
within the developing System, the control architecture and systen logie

are also tested, ;

The simplest kinds of stubs are those represented by non-functional

dummy code for debugging and testing, Thesge Simple stubs can be automati-

e, e

e e
cally created by support Yibrary facilities, _Functionalﬂstubs,“which may :
r e B A R, R . . R
.be compared to drivers, pProvide datg to the higher leve) Segment, Thege

freguently used stubs may provide data through:

o fixed parametersg
o simulation, €.8., using random numbers
o simplified or skeletal Proceduresg

These stubs are generally simpler to Prepare than traditional driver

Programs and often became part (e.g,, the interfacing code) of the lower

level segment, .

12



Top down prograrzing provides a basis for capturing performance
data during the develc,ment cycle. By replacing each dummy with a
timed sequence that utilizes thé'estimated length of time for that
function, the developing system becomes a model, As dummy routines
afe replaced with working code, the performance results can be appraised
against the performanca/objectives In a similar manner, storage allo-
cation can be modelled,

The testing cycle can be directly correlated with the phases of
software developﬁehé: definition, design, implementation and test
(refer to Figure 6)} ) -

Test requirqmenté identify the functions to be tested, specify

“the number of cases, the ranges and limits of data and describe the
hardware and software. n“vironment The test requirements specify the
degree to which the product goals‘ function, interaction, performance,
operahilitv, and ugeshility are evaluated, The avstem reauirements nravide
definition for software development, |

The test specificztion details the test design approach and test

structure, and identifies the methodology and procedures for testing,
The test specificationis analogous in content- to the software design
specification, The furctional part of the specification is subject to
change control so that the specification tracks change to the software
specification. _

The design review tests the software specification compliance with
system requirements and assesses implementational feasibility., The
review also evaluates accuracy, co&patibility with other software and
hardware and compliance to standafds. The specification 1s the baseline
for implementatiom, .

After the test specification has gone through a design review in )
conjunction with the scftware specification, test procedures are developed,

A test procedure 1s the series of actions required to verify that a software
function meets its specif ications, doing what it is supposed to do and |
nothing else. These actions may include:
0 Configuring (software and hardware)

o Conditioning the process

13
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o Introducing data
0 Iniciating execution
o Collecting Intermediate/final data
0 DiSplaxing intermediate/final data
0 Compariﬁg éétual to expected results
o Recordiﬁg test results -
The uyse of dumny code ié vieved as special cases of configuring and
) conditioning softwa?e for testiné.
E_Th’é“tetcolstecniqeéﬁadé'roc'é'd‘é"thé'm elves st be )
(Valldaraay, )
Mandator: use of a managenent controlled'system library promotas
?épid resolution of interface problems and a steady increase in system
.perfdrmance and reliability, Control {s obtained hy requiring that an
update to the syste. library be-cénditioned on proof of successful.testing,
This minimizes the likelihood of any software.change getting into the
System that would regress 1# and; therefore, Preclude its release, The
verificaticn procedures are reviewed by the manager whose approval 1ig
requiréd for update, |
Path-merge testing combines the processing ability of two Or more
functionally telated segments in order to test interfaces, The testing
Progresses as each lower level segment 15 added to previously checked
out higher levels of the System. .
Function testing verifies for each identified function that the
baseline épecifications have been met, This normally requires every
line of code be executed. The desirable way to test a function is.
to interface 1t with the checked out portion of the system and test
it by driving the total Bystem. This type of testing accomplishes path-
merge and function teating in one testing operation. When this ig #
not practical, an individual driver ig developed to test the function,
Additional testing then must be done to assure that the function interfaces
properly with the system.
Build testing determines the abillity of the total software to
perform in both nominal and non-nominal situations, This testing ig

the level after path-merge and functiop testing,
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Performance testing determines if the product perférms within
-an acceptable time frame and/or Storage space as described in the
_ébecification. Simulation and moéelling_programs can be used tp
é&aluate designs"andipredict the performance. Although these
Programs are on the Periphery of what may be considered testing,
they are valuable ip design and product evaluation,

After the test EXecution, the test resulrs are documented, Tesgt
results state how well the actual and expected results agree and explain
any differences, fhé test specific-tions, test procedurss and test
results provide é complete record of the particular test for future
reproduction, Conclusion and. recommendation seétions provide
direction for proéeeding to the‘ﬁext level of testing or for making
changes to the test, as appropriate, ‘ _

The documentation review is a test of the vélidity of the
documentation, Each deliverable documgnt is checked againsc all
other related documents to insure consistency of terminology and

technical accuracy,
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Managcmeqs Concepts ‘

The methodology described in the preceding sections provides
a basic level of technical éontrol"over software development and
test. The project manager must maintain a balance of product (or
seri;ce), resources; and schedule throughout the project, Tools
exist for rccording_gnd‘reporcing actual, estimated and budgeted
Tesources and schedules., In ﬁost traditional software projects, the
tanager has limited visibility of the actual product, and thus has
éifficulty in maintqihing the necessary balance, The difficulty is
cormpounded by changeéAand problems. In top down software projects,
the manager, through ihg libraries, has precise product visibility and
control and hizh confidence that the product is truly what the tests teo
date indicate. In efther a#p:oaph, the manager has a risk that there
are inadequacies in the design o;Athe estimates for the femaining
cevelopment. and test activities;

. The management toncepts presented in>this section enhance the
visibility provided by normal configuration management procedures.
These bohcepts‘are called Prograrming discipline, testing discipline,
and planning discipline. Each of these is keyed to the systenm library,
which reflects the current status of the product being implemented.

The programning discipline assures éhat the system desipgn reflected
in specifications is consistent at all times with the software produet,
Figure 7 illustrafes - ie dterative procéss of programming and testing
of the software, following baseline design. All completed code must
pass its specified testing requiremeqts.. If test results are satisfactory,
the code 18 added to the System library. The system library is always
available for independent product testing.

The testing discipline (Figure 8) ensures that all software interfaceg
properly and performs its intended functions prior to release. The tésting
discipline also provides an important measure of technical performance,
Mardatory use of the controlled system library for all levels of testing
ensures early resolution of interface problems, The results of tests
forn a basis for determining the current?level of capability thae exists,
and product readiness for formal reléase to acceptance testing. Success -

ful tests are reflected in the implementation plan,

17
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The planning discipline (see Figure 9) includes the following:
o systematic,vstructured management review meeting to control

‘plans;'chﬁnges, problems and progress,

'
T

o formal_implemenpation plan for-use as a record of progress
) '_' made, plans;'milestones, and actions talen by manégement,

o controls for requirements and software changes,

o provisiéns for documenting and correcting problems,

The interrelated bfoccdurqs are the basis for management control at the
technical working ieyel.

A eritical review of the technical status of software implementation
and test Is key to early'assqssment of situations impacting successful
complet Zon and deliﬁéry. In ﬁoét project situations; a weekly cycle
for review and reporting the technical status of implementation and
test will assure adequate management visibility. Figure 9 illustrates
the inputs to management review. ReJiews would typically be conducted
aéidéscribed below.

Each senior manager conducts a meeting of his line managers and
key technical personnel to review thg Implementation plan, discuss
problems, status, schedules, and chaqges; and document recommendations
for revising the implementation plan:‘ The meeting pfcpares each senior
manager for the program manager's meEting where decisions are reviewed
and unresolved problems are addressed.

The program manager's meeting is attended by the senior managers,
and conzract, financial and configuration management personnel., This
meeting considers plans, schedules, problems and change proposals affecting
technical, financial or contractual performance, -

The implementation plan is the basic management tool used in.planning,
reviewing and reporting the technical aspects of system development and
testing activities., The implementation plan forms the basis of much
of the discussion during the review meetings, At all times, the plan

reflects the best technical judgment of the management team implementing

and testing the software.

20



Requiremanty

Management Planning and Review

Crange
Exalianon

Implementabion
Plan

Change

Problem
Programming and Treiting

Problem

Aesotutian

Libraney

FIGURE 9, Planning Discipline

21



Programming and testing tasks which are reflected in the plon
are cfested from three sources:” %aseline specifications, authorized
cﬁanﬁes and probl;ms;b‘ﬁach of thesec sources must ho carefully
dbcumented and controLled

" Specifications are required in all large software nrojects and

) form the bascline far implementation The requirements (what) portion
1s usually subjcct to customer approval and change contrel. The desipn
{how) portion nornally is subject to internal project control.

Proper coordination and review of initial requirements and of =
IEVlSiOHS as they-are made resylts in a more stable system., The
objective is to firmly Fix the rcapon51billty for-the acceptance of
changes with management, which shields the individual pr:;rammer from
Severe pressures to accept and implement proposed changes. Adequate
technical analysis and evaluation of all resources prior to making
implementation decisions 1is ensured by coordinating all requirements
chanﬁes with the management team. Unnecessary and costly changes
and the unstable influence that thoir implementation would have upon
the software may be avoided almost entirely by following the policy
to commit implemeniation resources only after adequate review. Formal
coordination and review of changes ensures adequate documentation and
dissemination of the changes being accepted, as well as the proposed
changes not yet acted upon, and the requests for modifications which
have been rejected. '

Once a segment has been added to the system library, anyone who
experiences or observes a difficulty with that segment is charged with
the responsibility to report the problem. Errors made and corrected -
prior to adding a sepment to the system library are not recorded. Reported
problems are placed in an active file of open problems and remain on
the open list until appropriate closing action {is approved through
management review. Problems may be closed by: submitting modifications
to Eorrect the deficiency; stating an operation restriction on the use of
the segment and the operational procedure to be followed; providing proper

interpretation of requirements and intended use.



4. Documentation

The software documentation strategy is based n the szelf documenting
nature of structured programs. The Strategy exploits three documents:
detailed requiraﬂents, software design and. listings., Since the listings
are the product of scftware development no new program documentation
s produced after the design phase except the code itself.

A software devélopment project has two major checkpoints: design
review and acceptanué test. There is documcntation produced in the project
phase which precedes. .each checkpoint. The analysis and design phage
produces a design specification (typleally including detailed requirements
and software architecture) and, sometimes, a development plan, a standards
nmanual; a test specification or their equivalent. The development phase
produces program listings and pgogram documentation (traditionally
including narrative and flow charta) and, sometimes, user and operator
guldes and test procedures,

-Ehd item documentation {excluding listings and user and operator
guldes) which traditionally is prepared after the design phase consumes
5 to 15 percent of the programning project budget. The elimination of
this documentation represent a significant reduction in project cost,
The primary purpoge of this documentation is to support progran maintenance
and modification, _

The strategy simply 13 to eliminate high cost, low use program
documentation. This step can be taken in traditional programming
projects with moderate risk if impeding system testing and subsequent
program maintenance. Because of the improved readability, structured
programs are (nearly) self documenting, Thus, in projects employing :
structured programming techniques, program documentation can be eliminated
with minimum risk., This strategy provides as final software documentation,
the design specification and the listings., For the strategy to succeed,
the design specification must be kept current through change control
(see Figure 10) and must adequately document interface standards in addition

to the architecture and funetional structure.
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 Figure ll‘illustrates theASOftware development process and relates
1the documents to esach phase. As the illustration suggests, the purposcs
of documentation are to discipline a subsequent activity and to record
the resuylts of an activity.

The Bystem requitements provide a single, comﬁlete statement of

the requirements that the software is to satisfy. Ideally, the system
Tequirerents are sufficiently complete ai ! detailed to provide a basies
for system dEﬂign. However, in most projects a detailed requirecrants
' statement_is part of the design documentation. As a consequence, Lonme
plan distinguish functionalh(requirementa) and degign epecifications,

The test requirements iéen;ify the functions to be tested, and specif

the nucber of cases, r:nges-and limits of data and hardware and software
envircnment, -The test requifements are specified at the zame time ag
the systen requirements, Test requirements discipline preparation of the

test specifications.
The design specification contains two major parts: requirements

and architecture. The parts are distinguished because the r.quirements
&re subject to custc.er (external) change contfol and the architecture
is subject to projec.. (internalj chﬁnge control. This control provides
& singificant benelit: an up-to-date specification which will be
Incorporated as part of the end item documentatfon.

The test g:zcific:tion specifies a desi.u approach and test structurs

which will demonstrite that the software satisfies requirements, The
test specification 1s similar in content and format to the software
specifications. The test specification also ig subject to change control,

The gtandards manual disciplines software development,

The foplementation nirn is a primary management control document,

The maintenance menual 18 the end item software product specification

which provides a qualified programmer the information required to modify
or maintain the software, This manual augments the up-to~date design
specific =ion with annotated machine listings. These listings provide

completed deliverable documentation at the time of systenr acceptance,
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The user and opcrator manuals provide twao types of informationm,

First, they provide the procedures to set up or Iinitialize the

-Systen and the mlnlmum equipment configuration including systenm
Aéenera:ion constralnts parameters, dcfault values, device assignments,
ééc. Szcond, the manuals cover the usger techniques, messages and
‘operator actions,.

The test procedures are the detailed procedures, test data and

expected results rgquired to conduct a test, The controlled, up-to-date
portion of the test spec1ficacion is considered to be part of test
procedure documentation.

The test results state how well the actual and expected resultg

agree, end explain any differences. The test results and associated
test spe cification and procedure provide a complete record of the
partiCL lar test for future reproductlon. Conclu31on and recommendation
sectlons prov1de direction for proceeding to the next level of testing,

or for czking changes to the test, as appropriate,
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Part I - BACKGROUND

Host conputer prograns arce never designed; they are created on
the coding pad. The blame for this falls on three parties:

.

1. 7 Programming managers. Host managers are overly Moutput

..oriented".  Since code is the largest part of the final

- .product, they focus their attention on coding, diverting

~ attention avay from the more important task -- design.

2. © Educators. Most programming schools, classes, texts,

etc, teach ™ coding. Program designing is almost
completely ignored. -

3. Prograsmers. ~Most progranpmers are totally unaware of
' good design strategies aad techniques.

The purpose of +this paper 15 to begin solving this problew, by
defircing a set of d&<.ign measudres, sStrategles, and techniques
collcctively knos. es Ycorposite descign™., Part I sets the stage
for this by discussing the realities of today's progratuming
environgent, discussing the three major factors of a prograwmming
effort, and defining some 1initial concepts, definitions, and
notation for Ccmposite Design.

Dburicg the 1initial developmnent of thio paper, the term "modular
desicn" vas used, {Hlovever, several readers of the paper reparked
that they had preconceived notions of modu.ar design which they
confused with the concepts in this paper. Heuce, a nevw tern,
Compcsite Design, was chosen to represcnt these concepts.



.

PROGRAMNING TODAY

Perhaps the biggest problen facing programoing today is the

extreme difficulty and cost encountered in creating and
taintaining large programming systens. An over-used tern,
"modularity”, is often given as the answver to this problen,

To-a large extent, wsodularity, when interpreted correctly, is
the ‘answer. "In—-particular, appropriate structuring of the
System, 1ts documentation, the project, its management, and
all communication would greatly enhance maintainability and
growth properties and extend the lifetime of large, complex
Programming systems."[ 1] Note the word "appropriate®” in this
quotation; this is key to many later concepts.

In the industry, there is a lot of experience and knowledge,
both  published and upublished, in the structuring of
documentation, project organization, and project phases.
Little thought is ever given to the structuring of the systenm
itself, Hence, 1t appears that we <can -structure the
prograoning development process, yet we can't structure the
program. .

One obvious argument at this point is that we do know a lot
about programming. To a certain extent, this is true, We're
reasonably good at desiguing the external aspects of a
progran, €.g9., languages, performance constraints, human
factors, file design, ectc. We're also fairly proficient in
the actual prograuming of a well-defined function. Por
instance, vwhen faced with the task of programning a
subroutine to convert binary numbers into decimal numbers,
nost programmers vould have: little difficulty in
flowcharting, coding, and testing this subroutin~ using one
or more techniques for coding, testing, etc.

Also, there is a lot of literature on the internal algorithus

of a program or system, e.q., 1/0 buffering, paging,
schednling, sorting, memory allocation, and file searching.

To summarize, we know* how to
1. Design the external aspects of a system.
2. Design the internal algorithas of a systen.

3. Design and code individua)l subroutines or programs
¥ithin the systenm.

.——————-—-—-....-...—_.-._..._....__..—...—_—_..—.....--.__—--—--—ﬁ.—_—-,-—._...—_-——.—-_...._.~—_...-—_—._..-._.._

*I'm  using "know" in a relative sense hore. Certainly, our
knowledge in these areas today is stjill quite limited.



‘Note. the missing link. How did we get from step 1 to step 2
or to step 3. This missing link, the subject of this paper,
is:

o, Design the internal structure of a system.
The mfésing 1ink is better illustyated by an example which
describes a “typical® programming development effort.

Support- a rudinuntary information retrieval systea is to be
developed. It will .operate as an -applications proyraf, being
nultiprogramued ¥ith other applications under the control of
an operating systen. The information retrieval systen
comuunicates with a group of terminals and a data base of
abstracts. - -

The first step, involving several systems a~alysts, is to

specify the external chiaracteristics of the «j..ten. They
specify the language seen, by the terninal uscr. They also
specify the data. base design and certain  perforgance

constraints, such as terminal response time and data base
search time. : :

‘The analysts go on to a second step, the internal design of

the . -systemn. They design an algorithm to service the
terminals and an algorith' to search the key words in  the
abstracts, HNext, they hand their specifications to a

progyrameping group for implenentatic:..

The pro:--aching group takes over, armed with a docurent
containing specifications for the language, the file design,
per.ormance constraints, and several algorithms. They
recognize that the first step for them is to definc the
godules* in their systeaq, since having a "modular" design is
apparcntly a good trait. They regard this step very
infornally** and as a nulsaiuce, since it appears to be an
obstacle to flowcharting and coding the system. They perform
this step usually wusing a comb - nation of the following
strategies: :

...._.-—.—-—--.-..--.—......_.—.......—..--——..—---.._.-..—-....—......-..-.—-—-...-——..-..___...-_...._..—....-.--_.-—-.——._..--.._—._

«] use "module? in a loose sSense here, eguating 1it to
ngubrottine. It will be more fornally defined in section 3.

»«I say "informally" for two reasSons. First, 1 have never
seen a project schedule that recognized a vstructur:l design®
step betwcen external design and wmodule design. Secondly,
its sianificance is always ov: -looked. I have seen
programmers criticize otLher progranwexs® external designs,
detailed wmodule designs, and code; I have never sceh a
modular structure criticized.

)



i, Draw an overall flowchart of the systen, making ecach
block in the flowchart a module. '

2. Create an *initialization modulet, a "termination
module", and several "processing modules®,

3. Assign each -progranueer  an arbitrary ‘“piece" of the
7 systenm, allowing each progranmer to work out his oW I
structure._, . - :

4. _.Create a wmodule to handle ‘'all input operations®,
another to handle "all output operations*.

5. Look for identical sequences of operations throughout
the systen, creating a module for each scguence.

Once this step is done, the progranmers' sigh with relief and
perfora their “real work"”, internal design, coding, testing,
and (alas) debugging of each module. Finally, after several
schedule slippages, a few design changes that unexpectedly
affected almost evéry module, and sone ‘ast-minute piecing
and patching together, they get the system on the air. Over
the next yecar, a series of modificaticns are requested.  Each
podification results in unexpected large internal changes,
Finally, because the installation cannot afford paying a
staff of prograsmers whose job 1is simply maintenance and
modification of the systenm, the installation rcluctantly
stops all nodifications. Now, the static inforszation
Lctrieval system cannot cope with the ever-changing needs of
its users, so the users gove elsevhere. End of a sad, bhut
typical, tale,

The system died because no one recognized the need for
"appropriate structuring of the systen', Also, it will
become obvious later on that the five strategies listed arne
poor design strategies.

The following list is a set of generalizations about today's
brogramming environaent. Although most of them are obvious,
it is vorthvhile to think about each ote before proceeding.

i, Programs have a long life. This is illustrated by the
popularity of enulators on today's third generation
systems. Programs written ten to fifteen years ago are
still in operation.

Another 1illustration is the number 0f releases or
versions of progranming products. FPor instance, 0S/360
has had 2t official releases, Its smaller brother,
DOS/360, has had even more.

wt



As a corollary, ve can say that progyrans hneverl achieve
stahility. They never achieve freedon fron bugs nor
freedom fron additions or changes.

2. Preogramrnrs spend a majurity of their tiwvo .correc:ing

eILTOES. If- you obserin a Cross gezcion of progranr o4

. (even those devel 'ping neou prograuasy, you will find that

most of their time is spent in testing, debugging, and
‘correcting eNrorS. _

3. More often than not, technical designs are deternined
based on subjective personal preferences. I have heard
programpers say, "To design a general and extendible
systew, data shculd reside in a set of flexible control
blocks." This statement has no technic.l woret and, as

I shall later show, is far from the triuth. 1In fact, the
“opposite of this statenent, "... dat :hould not reside
in a set of flexible control blocks" is closer to the
truth- ) * -

4. He don't follou the principle of standing on others’
shoulders. nperhaps the central problem we face in all
of computér science 1is  how we are to get to the
situation where we build on top of the work of otheirs=

. yather than redoing so auch of it in a trivially
different vay."[2]

picture the electrical engineer desiguing a new T.V.
set. MHe certainly doerntt design each vacuun tube,
transistor, and capacitor all over aga:in; he relies on
existing components. In fact, he normally designs on a
puch higher level, using toff-the-shelf" power supplie .,
oscillators, etc.

This analejy cectainly doesn't apply to pregramninc
tcday. In gen-tral, programming technoloyies haven't
‘a¢ ranced to this level. Furtherwore, programezers aren't
encouraged to operate in this mode. In the majority of
new prograr.ing systems, every single instruction 1is
coded from scratch.

e e e el —

An acknowledgenent in the beginring of this paper 1is
appropriate., Some of the notation and terminoleogy in this
papnr, and several of the ideas in many of the chapters are
fr.a class notes and the yet-to-be published book,

puudagsatals of Program gystem Deslan, by #r. L. L.

Constantine. Hr. Constantine is a consultant with
Iuforration and Sciences Institute, Carbridge, Hassachusetts
and a part-time instructor at IBU's Systens Regsearch

Institute.



. QUALITY, COST, AND TIME

Quality, cost, and time are the three principal factors in
any _ programming eftort.. A progragming project is  an
optimization problem where we attcept to optinize one, two,
or. three of these factors subject to possible constraints on
the other factors. Yor example, a typical prograaning
Project might have-the following goals

“Produce a _program, maximizing its quality, bhut subject

to constraints on cost {budget) and elapsed time

{schedule) .

The factor of gquality can be subdivided into factors of
reliability, wmaintainability, modifiability, generality,
usability, and performance. Cost can be subdivided into two
major costs, labor and machine time. Since Coaposite Drsighn
has " a positive effect on many of these, I will identify the
relationships between each of these factors. and Conposite

Design. : LT

Since you will probably be critical of many of the follovin
clainms, I would suggest rereading this section after you read
the remainder of the paper.

Reliability is a measure of the nunber of errors or ‘'"bugs®
encountered in  a program. Although no quantitative data is
available, Composite Design appears to have a positive effect
on reliability, since podular programs are less complex and
testing ot modular prograns ~appears to be easier and much

more straiqghtforward.

Maintainal'ility is a measure of the effaort and tiwe: reguired
to fix bugs in the program, Conmposite Desiyn has no
significant effect on maintainability. HRowever, since I fewl
that errors can be isolated faster in a modular progranm,

future measurenents may turn up a positive relationship,

Modifiability is a nmeasure of the cost of changing or
extending the program in the fature. Composite Deusign has a
very positive effect on melifiability. This is substantiated

in later sections.

Generality is a measure of the scope of functions that a

program perforns, Usability is a oeasure of the hunman

factors of a progranm. Composite Design has no known effect
on these factors.,

Performance is a measure of the cfficiency of a program, for
example, in terms of execution speed  and storage used,
Composite Design can have g slightly negative effect on
execution speed, This relationship is discussed in section

tvelve.



Corposite Design appears to have a positive effect on the
coct of developing a program. Althouyh no gquantitative proof

is available yet, several trends a2 apparent:

i. Progreaner pro&uctivity; in ~wmplensnting a pProgren

“.desigrud  via Conpocite Design appests to be highe¢x than

. normal. Thiz "is expected since productivity is

.ipversely re'ated to the cooplexity (interactions and

~ dependencies] in a progran. Ceaipo .. te  Design creates

progrdam with wlcosely coupled® (in<cpoendent) parts, thuc
reducing the -interactions and dependencies.

2. Design changeS are ‘cheaper because they normally affect
only one part of the prograsa. '
3. The design of th-- progran is very visible and usually
© understancable. This increasaes productivity and ~lso
eases the process. of adding new prograwvnerls to the
project. :
4. Testing of the program can proceed in a straight-forward
sequence of steps. In practice, this reduces tho

complexity of testing and allowus testing progress to be
measured. : ) - o :

These points are i1lustrated in sections nine and ten.

Composite pesiqgn, to date, has had no observabkle effect on
the elapsed tine of a project.



CONCEPTS AKD DEFINITIONS

Today, "modularityv is a popular term. Often, terms such as
"sodular" are added to the names of programs, to the titles
of books, ctc. because, *“to be modular jis to be good.n
Unfortunately, “modularity" is a widely unisused and ill-

understood concept.,

The first order of business is to define the term nodule.
For now, we will not distinguish betveen "qood" or "bhagn
zodules, but simply define the basic characteristics of a
podule. A nodnle is a group of one or nmore progran
Statements with the folloving characteristics:

1. The statements are lexically together. That 1is, when
viewing a "listing of the Statements, the statements are
physically together on the listing.

2.  The Statesents are bounded by identif;able boundaries
{(e.g., START-and END statements),

3. The statements are collectively referenced by a nanme
(the module naume). ' '

4, The statements can be refebenced, by the nmodule nanme,
~ froam any other parct of the prograanm.

Hence, we see that the module corresponds to structural
entities is npost lanquages, such ‘as the subprogram and
function in FORTRAN, the procedure in PL/I and ALGOL, and the
CSECT in o0s assecbly language.

The purpose of a nodule f{at least those module:, tontaining
erecutable statements) is to receive some input data, perform -
Ohe or more transformations on  the data, and return sogae
output data. To depict this, we will use the folloving forum:

CALL SQRT (A,B,C)

vhich means - execute module SQRT, where the data named a, B,
and C are the input and output data. -

For purposes of this Paper, we will oGmake the following
assumptions concerning modules:

1. Fhen a CALL Statenment is executed, execution 1in this
module is suspended until execution of the called module
ends.

2. Hhen execution of a cailed rodule ends, execution of the
calling module resunes vith the statement innediately
following the CALL Statement,



3. When excecution of a wodule ends, execution tesumes in
the caliing mwmodule. Hore plainly stated, "all wodules
return to their callers.”

Points one and two are sinply popvlar conventions. Point
thre is a necessapy condition ir C..aposite Design.

Graphical aotation. plays an important part in Conposite
Design. The notation. is dillustrated in Appendix A. The
following example will explain the basics of the notation.

Prom this diagram, we can determine the following:
1. There are three modules, A, B, and C.

2. Somevhere in module A, there ar¢ at least two CALL
statemoents, one for module B and one for C.

3. Semewhere in module B, there 1is at least one CALL
stategent for todule €,

4. B recrives an input of X and returns an output of Y. C
receives an  input of S or T, and passes 5 or T back as
output, respectively. . .

5. B is spbordinate to A. C is subordinate to both A and
B.

Hote that this type of diagram shows only structural
relationships. it does not imply any procedural or
algorithmic relationships. - For instance, it does not tell us
¥hother X calls B before it calls C, or vice versa, how many
tines A calls B, whether A calls B and € everytime A 1S
cxetuted, etc. ’ .

An  alternate method for illustrating the parameters is shoun
below: '



IN ouT
1 X Y
2 T T
3 5 S

-

A key, and often misunderstood, definition is the function of
a8 nodule., A modyle's function is the .transforcation {input
to output) -that occurs when the nodule jis called. 1In other
wvords, a modulets function is wyhat happens when that module

is. calledn,

Hote that the functiopn is related not only to the operations
performed in that vodule, but also to the functions of any
modules called by that module. When Speaking of a moduyle's
function, the module should be viewed as a black box. That
1s, we shouldn't care how the module perforns the function.
In fact, we don't Care whether  the function is performed
entirely within the wodule or vhether the module calls other
modules to perfora the function.

Understanding this definition of the function of a nodule is
crucial to understanding Cozposite Design.

A seqment is a group of statements having some of the
Char:cteristics of a nodule. The statements are lexically
together, bounded, and May or may not have g collective nape
(segnent nane), Hodules are cowprised of one or more
segments, which are either Placed in the nodule originally or
are copied into the module at counpile time. The concept of
a segnent is not used ip Conposite Design, although it is
sotetimes used ip the later design ang coding of individual
nodules (e.gq., structured Progranming [3)).

The fan-out of a module is the nuypber of unique modules that

ife called from that aodule. Por ©Xanple, in the pPrevious
diagrau, the fan-out of module A is two. The fan-in of a

wodule is the nupber of unique modules that call that nodule,
In the previous diagram, the fan-in of module C is two.



Throughout this paper, I use two terms, the program and the
problen. The progqran is what we're designing. The problenm

is the recason for the progrem. That is, the progran is a
solution to the problem (or class of problens).

12



Part 11 HEASURES oF HODULARITY

The nost important consideration in Program design is having a
Set  of objective neasures of the design. With such a set of -
Deasures, we €an objectively evaluate the "goodness or badnessy
of a design, .

The “two wost important feasures in Conmposite Design are module
Strengty ang nodule coupling, Section four defines wmodyle
Strongth, vhich ig d’measure of the "goodpe: . of an indivudal
hodule. Section five defines podule Coupling, which jis a neasure
of the interconnections and interrelationships anong godules,

Section six defines several other less important measures of
modularity. . - )
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;BOUYLE STRENGTH

The optimal modular dexzign is one in which the relationships
ancnog. ele onts pot in the same module are mininized. There
are two wo;: of achieving this - minirizing the v ol iionships
apo: nod-les and maxisining relotionsldps anon- el-wents 1in
the same -odule. In practice, both ways are used.

The -second method, maximizing relaticn~hips among elenc. ts in
the -same module, is the subject of thi. section. *Eloneat?

in this scnse peans any form of a “picce® of the module, sucn

as a statement, & segment, or a wsub-function™.

This measure, known as medule strength or binding, is one of
the the most inportant neasures of-a modular design. All
other things being -equal, a wmodule with high strength 1is
“good", and ons uvith low strength is "bad®.

The scale of str:-gth,. from highest  to lowest, is shown

below: : -
1. Functiongl

2. Cor.unicaticnal

3; wProcedural

h. Classical

5. Logical
6. Coincider.:al

The scale is not linear. Punctional binding is much stronger
than all the rest and the botton two are much wearer than all
the rest

For each type of binding, we will define it, give an exanple,
an: try to rationalize why it is found at its particular
position on the scale. We will see that high module strength
hes a positive effect on programning cost and on progran
guality (in ternms of extensibility and meintainability).

Coin -idental binding occurs when there is ©no wmeaningful
relaiionship among the elements in a modu’e. Coincidental
binding is usually the result of one of the following
situations. -

1. An existing program is "modularized®, by splitting it
- apart into modules. ) .

2. Modules arc created to consolidate "duplicate coding" in
other modulcs. ' - :



ks an example of the second situation, suppose the following
:3equence of instructions appears several times in a module or
in several modules:

A=38B+¢C : <
+ GET CARD
" PUT OUTPUT -
-IE B=l4, THEN. E=0

A well-intentioned programmer may analyze the situation and
decide to replace all such sequences with a CALL to module X,
and then create a nodule X containing these faur
instructions.

Hodule X 1is now probably coincidentally bound, since these
four instructions have no apparent relationships among one
another, Suppose in the future we have a need in one of the
modules originally containing these instructions to say GET
TAPERZCORD . instead of GET CARD. We noy have a problem. .f
ve modify the instruction in sodule X, it is unusable to all
of the other callers of X. ' '

It ~is° only fair to adnit that, independent of a module's
strength, there are instances when any module can be nodified
in such a fashion to make it unusable to all its callers.
However, the probability of this happening is very high 1if

the nodule is coincidentally bound.

Logical binding, next on the scale, 1inplies sonme logical
relationship between the elenents of a module. An example :s
a wodule vwhich performs all input and output operations tor
the program or a module vhich edits all data.

The logically hound vedit all data" module vould probably be
inplemented as follows. Assume the data to be edited are
master file records, updates, deletions, and additions.
Paranmeters passed to the nodule would be the data, and also
a special parameter indicating the type of data. The first
instruction in the nmodule is probably a four-way branch,
going to four sections of code, edit master record, edit
update record, edit addition record, and edit deletion
record.

Host likely, these four functions are intertwined in soge vay
in the module, because tie progranmer took advantage of the
fact that they exist in the sage module. If the deletion
record changes and requires a change to the edit deletion
record. function, we probably have a problem, since this

function is intertwined with the other three.

15



In short, loﬁical pindi 4 usually results in tricky code
which is dif{ficult Lo modify and in the passing of
unneces:.ry paraneters.
CLASSIC L _BINDING.
Classical binding 15 the same as locical binding, except the
elemonts are also ‘related in tino. - That is, the togically
bound elements are executed sequuntially in tinme.

The " best cxanples of modules in this class are the
traditional winitiralization®, nteraination®, nhous-keeping®,
and "clean-up" nodules. Elenents in an ipnitialization nodule
arc logically bound bccausc wipitiaization” represents  a
~logical class of functions. In addition, these elercents are
related in {ine since the elerents are executed together,
sequek .ially 1p tine (i.e., 2t minitialization® timc) .

Hodules w¥ith classical binding. tend to-exhibit all of the
disadvantages of strictly logically bound modules. Houvver,
classical modules are higher on the scale since they tend to
be siuapler, since 51l of the elepents are usually executed at
one tinme (i.e., NO parameters and lcgic to determine which

elenents to exccute) .

_-_.__..._._...._.._-.—_-.—_..-._....._.-_

procedurally bound wodules are modules whose ele ents are
related in respect to the procedure of the progran.
procedurally puund mouusL€S are the result of flowcharting the
prollen to be solved and then -defining modules to represert
one or more blocks in the flcuchart.

the practice of designing by drawing an noverall flowchart"
of the progran usuvlly results in modules with procedural
binding, since flowcharting 'is procedure—oriented. TO
f{llustrate, ansume the following flouchart represents the
four sequential processes that make up a particular program:



_{_ENDj

If wve were to use this to define the nmodules in the program,
ve vould have procedurally bound nmodules (by definition).
Typically, structures of procedurally bound modules for this
pragram might look like this:

OR

C D A,B C D

I
P

Procedural binding, although high on the strength scale
because of a close relationship to the problea structure, is
still far fromz the ideal - functional binding. The reason is
that the procedural processes in a program are usually
distinct fron the functions in a prograun. tence, a

procedurally bound modnle can contain several functions or
just part of a function,

COHMUNICATYORAL BINDING -

A module with copsunicational binding is a module with
procedural binding with an additional characteristic - the
elements ‘conrpunicate" with one another. That 1is, the
elenents in the module either rcference the same set of data



or. " they paus data apmong thenmselves, e.d., the output of one
Lelenent is the input of another clement.

Consider the following hoduleg:’

"vx - update-record in data base and record the record in
audit trail ‘ :

4 - calculate new trajectopy and send it to terminal
¢ - update trecord in data base and read next
transaction : '

#odule A has communicational bindinq, since the elements use
s common set of data (the record). - Fodule B w1lso  has
communicational binding, since the output of the first
element (the trajeclory) is the input to the other elcnent.
‘Hodule C has procedural binding, since the eleaents do not
compunicate. S

Coxmun. =ational binding is higher on the scdle than
procedural hinding since the elements in a module with
comnunicational binding have a stronger “bond". That is, not
only arc they procedurally bound, but they reference the sane
data.-

By now,  you may have observed that a wmo‘ule can partly or
.vholely have the charactoristics of me = than one strength.
If a module completely exhibits several .spes of .strengths,
we classify it by tne higher strengih. TFor instance, a
module with communicational binding also lLas, by defination,
procedural binding. §.wever, ‘We classify it by the higher
strength, communicational binding.

2 wmodule which partially exhibits several strengths 1is
classified according to the lover strength. For instance, it
a mudule has three elcpents, all of wlhich have procedural
pinding and two of wh R have cowmeounicational binding, the
podule has procedural binding. A module with part classical
binding and part procedural binding {(¢.g.. nread all input
transactions and all master records and then print report
peadings®) is clasrified ¢ith the lower strength, classical

binding.

punctional binding 3s at the top of the strength scale. 1In
a functionally hound module, all of the elements are related
to the performance of a single function.

A question that always arises at this point is - vhat 1s a
fuiction? 1In mathematics, Y=p(¥) is recd "Y is a function F
of X." The function F defines a transformation or mapping of
the independent (or input) variable X into the dependent (or
cntput) variahle Y. Hence, a - function describes a



-transformation from some input data to some output data. In
teras of programaing, we broaden this definition to allow
functions with no input data and functions with no output

data.. s

In’ pratice, the.above definition does not clearly describe a

functionally bound wnmodule. ' One hint is that if the module

does not fit the descriptions of the other types of binding

(comnuvicational, . procedural, classical, logical,

coincidental), it is probably functionally bound., Another

.¥ay of ledrning ‘to recognize functional binding is sinply to

use Composite Design. After finishing this paper, you should:
have a clear concept of functional binding,

Examples of funct}onall? hound modules are:
Coapute square root

Obtain random nusber :

-

Nrite record to output file
Delete récord from master file

The first module, Compute Square Root, is a function with an
input and an output (square root of the input). The second
sodule, Obtain Randowm Huwber, is a function with an output,
but no input. The last two, Write Record to Output Pile and
Delete Record from Master Pile, are functions with an input
argument, but no output argument.

A useful technique in determining wvhether a nodule 1is
functionally bound is writing - a sentence describing the
function (purpose) of the a@odule, and then examining the
sentence. The following tests can be made:

i. I{ the sentence is a compound sentence, contains a
comma, or contains wmore than one verb, the nodule is
probatly performing more than one function, therefore,
it probably has procedural or comnunicational binding.

2. If the sentence contains words relating to time, such as
"first", "next#, “then®, "after", "when', "start", etc.,
then the module probably has procedural binding.

3. If the predicate of the sentence doesn't contain a
single specific object following the verb, the module is
probably logically bound. For example, Edit All Data
has logical binding;- Edit Source Statement has
functional binding. ‘

4. - Words such as “initialize"w, "clean—up“,' etc.  imply
classical binding. ‘



The following diagram is .a structural diagram of a typical
(and actual) prograc. Tle purposc of the program (i.c., the
fir~tion of the "top* vadule. is to update a customrr file,
Input .to the first module is.a customer record (e¢.g., nudbber,
name, address, status, and dat.. or sales). The custon:+r file
cofitalns custoer records, Each cvicomer record is folloued
by. any nuuber of sale rccords, containing data on sales to
that’ particular customer. The prograu will create a new
customer record or update an existing customrer record.

Iy

The readecr is invited to carefully inspect each nodule and
determine their strength. Your results can then be compared
with the anralysis on the following page.
Update
: ’.Cl:!siomcrr
File
\
Initialize Create Uptiute Close File
Control - New { Exitiing ! & Print .-
Tatals & Customer Cusiomer Control
Open File Records Records Totals
Create [ Create Update Sale Print
Null Sale \ Basic Reer «ds er Control
Records Customer Customer Totals
Record Record
Create Edii Cusiomer -
Status Number,
Codes Name, &
Address




The analysis of this structure follows:

1. Hodule MIpnitialize Control Totals and Open File®

represents classical binding,

2. Hodule "Update Séle Decords or Custoner Record®

“logical binding since it performs a class of logically

related functions (updating records).

3. - Module "Close "File and - Print Control  Totals®

- procedural - binding since its elements, close file and

print totals, are related only through the procedure
the progranm.,., '

b, The other modules appear to have functional binding.



BOLY . COUPLTHG

There are two wmajor measures of nodularity. The first,
module strength (binding) ., described in the previous section,
is .a measuse of the binding anone the intexnal elements of a
podule. Tie second woasure, coupling, is a measure of the
relationships among modules.

Covpling 1is a neasure-of the indepeﬁdence of uvodules. Since
a highly modular. desiqgn is achieved by maximizing the

relationships among the elenments of a module and pminimizing

the relationships among rodules, the scale for coupling is
inverse to the -scale for strength. That is, we¢ try to
achicve high strength avd low coupling.

The scale of couplfng, from lowest coupling (best) to highest
(worst), 1is:

1. data coupling T .
2 common- coupling

3, control coupling

4. ' external coupling
5. content coupling‘
As the scale of strength, the coupling scale i+ not linwar.
Data coupling 1is very low, control cout:ling and externcl
coupling are close to mid-range, and conter” coupling is very

high. The placewent of counon coupling on the scale varies,
depending on how it is used.

Pollowing the pattern of the previous section, e will define
ench type of coupling, give an example, and explain why it
sits where it is on the scale.

e e e —

Two modules are content coupled if one module makes a direct
reference to the contents of the other module. This oeccurs
in the fallowing situations:

1. one module medifies a prograr statement in another
podule.
2. one nodule refers to non-externally declared data in

another wodule. An example of vpon-externally declared
data" is a data elenent in a PL/T module that does not
have the EXTERNAL attribute. Thus, a reference to data
in another module where the syrb~lic name -of the data
was not resolved by o preproc-ss0L, sach as a linkage
editor, ivplies content coupling.



3. Two modules share the same contants. This can occur
vhen the statements of one module lie physically within
another nodule or when two modules physically reside 1in
one Mcompilable entity" (e.g., two CSECTS in the same
"module"” in-0S. isscubly Lanqguage).

It should be obvious that modules that are content  coupled
are’ -very dependent -upon one . another and that a scemingly
innocent change in one nodule can easily cause the bther
module to malfunction. :

In situvations oné and two above, one wmodule is dependent on
actual displacements within the second mcedule. Hence, alnost
any future change to the second podule will require a change
in the first modile. Also, a significant change in one
module, such as the use of a new algorithm or a change in
data attributes or format, may require an extensive design
change of the entire progran. |

Although situation. three does not nec: ssarily. inoply
situations one or two, we can show that it sets up a very
good "ambush™ " to allow the programnmer to easily create
situation one or two. Suunpose that two modules, READ-FROM-
TERNINAL and WRITE-TO-TERHIH4AL, are created and exist in one
"compilable entity.® Suppose, also, that they started out
containing two unigre sets of proyram statements and data,

At a later point in time, vhile a progranmer is modifying the
input/output statements in the two modules, he notices that
most of the input/output statements in the twvo modules are
identical. In a move to ‘“economizeY, he removes the
statements fron one module and simply branches into the other
module. (He could do this because they were both in the sanme
"compilable entity".)

ORIGINAL
Module READ: Module WRITE:
T —— -
e ’ e
-——"‘-h-_..___ .,--—""‘-h-_h,________
RETURN | RETURN
- NOw
Module READ: Module WRITE: ]
GOTO —— —

RETURN




So far, the two zodules still operate correctly, but they are
tightiy coupled. Now, @& new prograi=cr is asked to change
module WRITE so that it yrites some. data to ab audit trail
before it writes to the terminal. He vrites a WRITE~-LUDIT-
RUC 3D mod .’ o and-, upon eranining podule BRITE, inserts a
CALL instr:. -ion as folloiv3:

Module RTAD: ] Module WRITE:

GOTO o ' CALL WRITE - AUDIT ~-REC

— e —

RETURN

He has nowd created a bug in the progra, since the execution
of module RELD nov also causes an audit record to be written.

Ll L e e

Tyo modules are externally coupled if one wmodule makes a
reference to an externally-declared syrbol in the other
module. - For instance, 2a pPL/% unodule referencing a sysboal
with the EXTERNLL attribut:, or an asscnhly lancuace module
containing a “V-con", are externally coupled with anothel

module.

Since ext u¢nal coupling implies‘high'coupling (remenber, loy
coupling 1is ghat we're shooting for}, and vyet external

coupling is a conmen progranming practice, it's worthwhile to
dig more deeply into this type of coupling.

Consider the following case:

GETCOMM

S

e LINE TERMADDR

READT -=

GETCONN is a module whose function is getting th- next
commaend froo a ternzinal. In periforning this #fruction,
geTCcoMH calls the module READT, whose function is to read a
line from the ter:inal. READT requires the addiess ol the
terninal. It g i« this via an. externally declared data



elcement in GETCOHM, called TERHADDR. HREADT passes the line
‘back to GETCOMH as an argument called LINE,

Note the arrow cxtending from ir ‘de GETCOHHM to inside READT.
An arrow of this type is the notution for externally-declaved
references. -
So _.far, <o good.  How, however, we wish to change this
progras. HWe need to create a.module called GETDATA, whose
function 1s to get the next data line (i.e., not a conmand)
from a terwinal. -We recoguize that it would be desirable to
use module READT as a subroutine of GETDATA. These are at
least five alterndtive designs, wvhich are wxamined below.

1. GETDATA calls READT. Before it calls READY, it wmodifies
TEARMADDR in GETCOMM so that READT has the intended
terminal address.

[ —+ — L e

' w LINE //V'
TERMADDR\  Tine

= READT

Note that we have probably created a bug. GETCOH¥M, as
originally coded, never knew that any other module would
change TERMADDR. Therefore, when GETCOMM cex.cntes after
GETDATA, 'GETCOHM will be using the wrung terminal.

2. I1f the programmer of GETDATA recognized this problem, he
might put instructions in GETDATA to save the current
value of TERHADDR, set TERI{ADDR, call READT, and then

restore the original value of TERHADDR. However, if
there 1is a chance that GETDATA and GETCOHMM can execute
"simultaneously" {e.q., in a nultiprogramming

environment), then the bug still exists,

3. The programmer of GETDATA might recognize the problem
and decide to modify GRETCOHM. He changes GETCOMNM so
that is reinitializes TERHADDR each time it calls RREADT.
This may eliminate the bug, but consider the cost. The
programnner of GETDATA had to modify GETCOMH, a module
which should have been independent of GETDATA.

4. The prograwser of GETDATA wmight anticipate the above
- cases and decide that the easy way out is to code his
o#n read line function, either within GETDATA or as

- another new =module. This is unfortunate because he is



reinventing the wheel (by not using the éxisting READT
sodule} .

5. The proqranter may recognize that the real problem is
. high ccupling and 6ay decide to clean it up. He woakes
+ PERHEADD: an - imput ergument to READT instead of an
' :externallywdeclared data.iten.

P p——— . — < . W2 ———.

| GETCOMM | GETDATA

RN
T-ER_‘NADD}‘\

READT

in the long run, this.alternative is best, but is also the
most costly, since he had to modify both GETCOHH and REAUT.

This sinmple exaunple shows that external coupling has an
adverse effect on program nodification, both in teras of cost
and potey zial bugs. If GETCOME and REXLDT were not externally
coupled from the beginning (i.e., TERL.DDR was passed as an
argument), the addition of GUETIDATA wo'ld have bheen buch
siopler.

A second typ- of external coupling ~is a reference to an
externilly-¢-fined statement within a module, for instance,
when one module branches to an externally-defined statcuent
within another module. I leave it up to the reader to
convince himself that this is at lenst as bad as the case of
externally-defin~d data as shoun above.

Tvo modules are control c¢oupled if one wodule passes elenents
of control as arguments to the other module. An "element of
control" argument is an arguuent vhich directly influences
the execution of the called module. Typical elements of
control are function codes, flags, switches, etc.

conire* coupling is undesirable because the two wmodules are
pot very independent. since the calling module influences
the erecution of the called module (and, hence, has sone
knotledge of the internal processing of the called podule),
the called module is not a "hlack box", An additional side
effrct sonetimes ocCCurs with control coupling; many tipes the
strength of the called module is low (i.e., not functional
binding) .



It

pata eleuents defined on the COMnOW statement in FORTRAN
modules.

N centrally located neontrol block" or set of control
blocks (e.yg., as in much of 0S). '

Compon coupling causnes the tfolloving weakpesses in the
pmodules thal are-cobmoh coupled: - -

1.

A modification of only several modules may impact every

- module that 1is coRrcon coupled to thes- nodules., For

instance, assume only two nodules reference a data
element X in the comnnon envircnkoent. We desare to
expsnd X froa two bytes in length to four bytes.

WHe: nake the necessary changes to the the two mnmodules,

_bur discover, to our disnay, that every wodule that

references the coumpon environment nust be recompilled.

In 05, most of the data- elepments are contained in system
control blocks. These control. blocks are me g dy,
elenent by element, in mapping macros. Any module which
references a data element oust contain the mapping macro
of the proper control block. Anyone familiar with the

‘ongoing developnent and maintenance of 0S5 knows that the

npacro problenY is a very costly problen. since the
mapping macros are constantly changing, and since it is
infeasible to recompile the rany thousands of modules
whenever a m@macro changes, the modules always contain
varying versions of the same Raclo. This has led to
man- bugs in 5 and also to costly procedures to try to
track and control this situaiiom, ‘

A desirable goal is limiting the references in each
module to only those data clements whiclh the module is
suppo. 2d to reference. With common coupling, this is
impos. ‘ble, since ecach module can potentially reference
every data clement in the conpmol environnent. This
jeads to future probleams in modification of these
modules. For instance, when modifying a module, the
progranper @ay decide to add a reference to another data
element in the common  environment. This can lead to
bugs in instances such as (a) the other modules using
this data element assume that they were the only users
or {b) the programmer uses the data elenment for other
than its intended purposec. In general, such
modifications cause the data references in the program
or system to Dbecoce unstructured, uncontrolled, and
often unknown. -

Again, we canh use 0S8 as ah examnple. 0SS has an arrcay
called the Conmunications Vector Table in a well-Known
location ia its memory. Almost every data elewment in
the system can be located via the CVT. Hence, every
mo:ule in 0S5 is potentiaslly coonon coupled. This has

v
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led to costly probleus in trying to keep track of, and
control, which modules reference which data eleouents.

3. If a module references a connon environment, 1it's very.
ditficult to use that module elsevhere in the program or
- 1n another .progranm.

-

- Assume, in. a payroll program, we have a module named
. _CO#PFICA. COMPFICA conmputes an enployee's F.I.C.A.
deduction, wusing the salary as an input argument, but
obtaining this year's P.I.C.A. rate from the conmon
environment... We now desire to modify the payroll
program, adding a function to coapute, for the next
year, the weck when an employec's F.I.C.A. deductions
will terminate. We desire to use- COHPY¥ICA with next
year's F.I.C.A., but we face a possible problem, since

if ve temporarily modify the F.I.C.A. element 1in the

} common environment, we may cause a problem in some other

part of the program. .

The use of a module that references a compon environment.
in another program (i.e,, a program wWithout such a

comumon environment) is very difficult. Generally, we
have two alternatives, scraping the idea and writing a
- nev module or creating a “fake" «cotmon environment
before calling the modunle. The former is costly, since
we are "reinventing the wheel," The latter leads to
cowplex and cunbersone coding. :

On the scale of coupling, common coupling usually sits
between data coupling and control coupling. The exact
placement of common coupling on the scale is dependent on 1its
use. For 1instance, if «control elements are placed in the
conmon environment, the c¢oupling is closer to control
coupling,. In this case, a combination of control and comm:n
coupling is worse than plain control coupling (e.q., passing
control elements .via parameters), so that control/coomon
coupling is higher (vorse) than plain control coupling.

on the other hand, we can see that the disadvantages of
comnon coupling became less severe if the coomon environnment
is limited to a gsubset of the modules in a yprogranm. Hence’,
if couwon coupling cannot he avoided, it is desitrable to
limit access to the conmon environment to a minimal subset of
modules. This tends to lower the overall coupling in the
program. Furthermore, it is desirable to limit access to the
common environment to the “"top" modules in the structure,
since this still removes the disadvantages of conrnmon coupling
from the "lower" modules in the structure (e.g., allowing

them to be used in other programs).

I have discussed coamon coupling in greater detail because
its use 1is widespread today. Many people feel that common
coupling leads to 'generalized" designs. lowever, there is
no objective proof of this and the only proof available leads
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Us to believe that comwmon coupling leads to “ungeneralized"
designso. Fortunetoly, the weaknesses of common coupling are
beginning to be rcoognized. For instance, Belady and Lehman,
in a pap E on progian naintenance and growth[ 1], made the
fo.llowing observations:
" These concepts reflect 'the accepted viewpoint that a
- well structured systen, one-in- -vhich conrmunication 1iv
via passcd paraneters through defined interf.ces, is
likely to he more grovable and require less effort to
gaintain than one making extensive use of global or
shared variables.

DATA_COUPLIKG - -

Two modules are data coupled if one calls the other and they
arentt content, external, control, or counon coupled. 1In
other words, all input and output to and from the called
rodule is passed. as perfaceters or arguments. Also, all of
the paraneters  are data. -elements {(i.e., not control

elecnents). .

pata coupling is the jowest degree of coupling. Thus,
podules that are data coupled are highly independent.

We can make a very strong statenent about data coupling.
Data coupling 1is a sufficient condition for any prograd.

That is, any progran cai be  written solely with data
coupling. A proof of this statcuent is available.[ 8]

-._.-.-..—_.‘..—...-.-..._._.._.-..__..__...4-.._....._. - S

In wost cases, it 1is weasy to distinguish betuecen control
coupling and .data coupling by exanining the parageters
passed. Howcver, for certain typ:s of paraaeters, it is more
difficult to distinguish hetween control information and data
inforsoetion. several guidelines that may assist here are
listed below. :

1. The classification of the parameters {(control and data)
is dependent upon how the sending module pervcelves them,

not how the receiving module perceives theu.




If A passes x to B and A perceives x as data, then A and
B are data coupled, even if B executes diffecrently based
on the value of x, If A perceives x as control
information (i.e., A is telling B what to do}, then A
and B are control coupled.

¥ The same arguument applies to infornation returned froa
" . a mnodule, such as return codes or error flagys. If B
passes a Teturn code back to A saying "I've failed in.
performing my function® (implying that A can do vhatever
it vants), then this return code is data. If B passes
@ return code saying "I've failed; write error message
XYZ", then A-and B are «control coupled because B 1is
telling A vwhat to do.
2. Control inforpation 4is wusually artificially created
. information, that 1is, information over and above the
- ~infornation being processed by the program.

Suppose the function of- B is to process a- comnand. If
A sinply passes a -coorand to B and B examines the
coumand to determine how to process it, then A and B are
data coupled. 1If A passes a copmand to B and, in
addition, rasses a code saying "process this XYZ
comeand", then A and B are control coupled.

Point tvo also illustrates another dis:zdvantage of control
coupling. Control information is artificially created within
the program and 1is extraneous. tHence, control information

increases the couplexity of the program because the program
is dealing with extraneous and unnecessary data,
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OTHER GUIDELINES

The following guidelines have an effect on the modularity of
a program or systen. They are uscd to guide the nesignec
during the design process and also to improve a “first paug®
modélar design. =

The Principle of Parsimony [5] (or "stinginess") means "never
do -more tban you have to“. It has two parts, simplicity and
mininum comnitment:-

Everything else being equal, thc sinplest solution, design,
interface, ectc. 1s the best. This statement is very easy to

prove a.1 reeember, Yet it 1is often forgotten. Assune,
everything else beilng equal, that we have two possible
solutions, a sinpler one and & more conplex one. The sinpler

one, being easier to- understand, has a nore positive effect
on the future mainfenance and wodification of the progran.

The idea of minimu:u comeitment is that we should restrict the
solution of a problem to solving no sore than the ipmediate
problea at hand. In other words, never design a progran,
module, interface, etc. to do more than it is required to do.

Many people have some unfounded ideas about desigoing a
"generalized" program. They feel that generality has to  be
achieved via Mopen-ended" and "extendible® pmodules and
interfaces, usually via extensive cowmmon areas or control
block structurez. In wmost cases, progran designs of this
type display lc- strength and high coupling!

The trap here is that we are poor prophets concerning the
future modilications of a program. The best step we caun take

producing a general and modifiable program is adhering to
the guidelines of Composite Dewign and forgetting alout all
the misconc-ptions we may have.
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So ftar, I have encouraged thinking in structural terms, and

discouraged thinking in procedural terus. However, 1life is
not this simple. There are several relationships betueen
structure and procedure worth understanding; one of these is

the scope of effect and the scope of controlfu]).
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The scope ef control of a rodule is that module, plus all
rodules that are subordinate to that =aodule,. Por example,
the scope of control of j isg A, B, C, D, ang E. The scope of

conutrol of B is B, D, and E. The S€cpe of control of ¢ is c.

The scope of effect of a decision is the set of all modules
whose exccution is based upon the outcone of the decision,
Assupe godule B contains a decision x, Decision x determines
whether B will call D or B, The Scope of effect of x is B
(because different Statenments are exccuted in B depending on
the outcome of X), D, and B, s a second example, assuyme
decision ¥ in B determines whether B should continue or
vhether B should immediately return to A and then have A call
C. In this case, the SCope of effect of x js A, B, C, D,

and E.

The relationship between SCope of control, a Structural-
conzept, and scope of effect, a procedural concept, should
be:

The scope of effect of a decision should be a subset of
the scope of control of the nwmodule containing the
decision. ;

Examine the first Scope of effect example above, The scope
of effect of decision x was B, D, and BE. The Scope of
control of wmodule B (the module containing x) ¥as B, D, and
E. In this case, the rule isn't violated.
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In. the sccond. example, we sald that the scope of effect of x

vas L, B, C, D, and E. However, the scope of control of B is
stis) B, D, and £, so the scopc of effect is not a subsct of
- the s5c pe of control, and the rule is violated. Let's take

a closer look at this violation of the rule and see what it
1091135.

He previously said that if x was ¥true", B would continue
processing (€.9.. calllng D and E}. If x was fa use, B wvwould
return -to A and A would call C. Here's the problem! How
does A knowv whether -or not to call C?

Assuming that A and B aren't content coupled (e.g., B doesn't
modify A), the common situation is for B to pass the results
of decision x back to i. A& then has te exanine the result
and decide swhether to-call C. HNote that this decision 1in A
is really a repeat of decision x in B!

We have alre dy discovered two of the three probleans that
occur when the rule is violated. A and B are -now control
coupled, sinuz B is passiag control information to A, Hence
violations of the rule usually lead to control coupling.
Secondly, violations of the rule result in duplicate
decisions  being made in different podules. Lastly,
violations of the rule weaken the strength of the modules.
He ran assure that decisior x is part of the function
per‘»rned by B. tHowever, ve had to repcat the decision in A.
Periep:t this decision is not rcally relevant to the function
pecforied by A. Hence, the strength of A may be lowered.

A technique for elisinating scope¢ of effect - scope of
contiol problems is discusced in section eight.

Module S§ize

Although there are no hard and fast rules for the size of a
podule, we can make sote geperal statements about size.

Yyou should take a close look at modules with less than..5
executaile source statements or more than 100 source
statemer-.5. Modules with a very small nurher of statemcnts
may not perform -an entire function, hence, may not have
functional binding., 1In addition, a system with a large
pumber of very small mrodules may spend a disproportionate
tine in exccuting intermodule linkages. In souc cases, these
very small modules should be elinminated by placing their
statements in the calling modules,

Oon the other hand, very large modulus miy be probler arcas.
Althooah the number of statenents required to perforn a
funciion varies widsly, there's a greater probability with a
large-nodule that the nodule is actually poerf.oirming uwore than
one functis . A second prollem with 1large medules is
understandawnility and readability. There is evidence to the
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fact that a_group of about 30 statements is the upper 1linit
0f what we can master when reading a module listing.[ 6}

In ny experience, the "average" module contains betreen 10 to
40 high-level 1language exccutable statements. Also, there
are usually a small nusber of perfectly wvalid very suwall
nodiiles and large "rodules. Size should not be taken as a
firm:rule, but it should be used as . a signal to look for
al problens, '

——— e el L

Recursion occurs “when a module is a subordinate of itself.
That is, recursion occurs when a nodule calls 1tself, or when
a module calls another module, which calls another nodule,
etc., vwhich calls the original =zmodule,

Programmers usually steer clear of recursion because they do
not fully understand it. - Also, the module ‘linkage mechanisns
of sowme operating systems and-soue programming languages do
not sunport recursion. ’

The use of - recursion in a wodular design should be
encouraged. Recursion tends to elizinate some redundant and
excessive coding. To illustrate this, let's look at a sinple
example. : A

Assume We have the job of writing a module whose function is
"write error nessage to terminal user, or, if this is
unsuccessful, notify systen operator.® There are two
arguments passed to this module, .the . error pessage and  a
teruinal number. ' '

Let's look at two alternate inplementations of w@udule
HRITEMSG. The first alternative is to write the statenonte
that write the message  to the terminal, then check for an
error and, if one occurs, write a mhessage to the oaperator's
terminal. :

K
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MODUL~ WRITEHSG (MSG,THU)}
L -
»
KX
Se. up and write msg to terminal
. S
o - h
]

IF NO ERROR, RETURHN.

ELSE ..
.
. .
._.
_ "Set up and write msg to operator's
- terminal
RETURN o . .

looking at this, we way detect some duplicate coding and
decide, a% the expense of added conmplexity, to share soue of
these statecents betueed the "two halves'" of WRITE#HSG.

The other technic e we could use 1is recucsion. If the

messaye can't be . itten tc  the indicatcd tersinal, the
module ecalls ii :1f, passing an error mmessage and the
operator's ter:.: .l nunber as arguochnts.

o v e e o - e\  a— ———— —— AL e S S M A sl SRR ST

MODULE WRITEMSL (HSG,THO)
»
[ ]
-
set up a. 1 write mng to terminal
-
"
L]
IP KO ERROR, OR IF
THO = SOT10, RETURN.
ELSE "ALL WRITEMSG (EMSG,SOTRO)
RETURN.

_._-—_.._-———--___.._—-—-...._—-—.-.....—._..._.--_._....._—-_..._.-.-.__..._..——._....._—--....

The structual notution for this is:



WRITEMSG

Predictable_#odules
A predictable, or well behaved, module is one that, when
given the identical inputs, dperates identicdlly each time it
is called. . Also, a veld behaved module operates
independently of its. environment,

The most comnon violation of the first statement occurs when
a mwmodule keeps track of its oun state. The best example of
this ‘is -a module containing a statement like "IS5 THIS THE
FIRST TIME I'VE BERN ENTERED? IP YES, THENH...." Hodules of
this sort are usually wunusable in several places in a
program, which wviolates one of the basic principles of
Composite Design, E
Consider a wnodule called P"GET -NEXT IHNPUT TRANSACTIOU".
Assume that this module, on its first execution, reqguests the
operator to mount the required tape. Later, when podifying
the program, we have a need in another part of the prograw
for this same function (but using a different tape on a
different tape drive). TIf we were to wuse this existing
godule, we may find our tape drive eunpty! To pake nmatters
worse, only one of the two tapes will get aounted, and this
will depend on +ho calls this module first! llence, the only
vay out is by spending more money either by writing a npew
module or by making this module predictable.

The second case of an unpredictable wmodule is a module that
makes assumptions about its environment, or, in particular,
about 1ts caller. As an exanple, a wodule was written to
accept a string of wmessages as input, format them, and write
them to a terminal. At first glance, this module appeared to
be useful in several parts of the program. However, this
proved to be false bhecause of the implosentation of  the
module. The programrmer vwriting the module assumed that it
would be called by only one other module. Therefore, before
writing the string of nessages, this module wrote an
additional message, stating “ERROR IN  PUNCTION XYZ. ERROR
HESSAGES FOLLOW." Fortunately, this has a happy ending.
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This mistoke was discove:; nd and the e’ .ra message reaoved.
In this case, the gcolliyg gedvjo inceorted tuis nessage into
the string before calling the message module. :



Part III THE DESIGN DROCESS

Parts I and IT covered the “yhat" and "why" of Composite Design.
Armed with part II, you could be relatively successful in leaving
this paper and Using the concepts of Cozpcsite Dusign. However,
e have not yet really discussed the "hov® of Composite Design.
Part ¥Il describes the- process of producing a modular design.

The ;teps in the Canﬁosite Design (and developnent) process are:

1. Starting with the problem stategent (or functional
specification, external specification), design the
structure of the entire program or system using one or

more forms of analysis.

2. Review  the. coaplated structural design, trying to
pmaximize module strength and minimize coupling.

3. Review the desigh,aqain, using the quidelines of section
S1X (e.g., parsimony, scope of effect, size, recursion,
predictable behavior).”

b4, Design _the internal prpcedure- (algorithe) of each
sodule, ;

5. ' Repeat steps two and three.

6. Code the internal procedure of each module.

7. Proceed with the steps of unit {module) testing,

integration, systean testing, etc,
Step one is described in section seven. Step three is described

in section eight. Steps four, six, and seven are covered in
section nine.
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COuPOSITE ARUALYSIC

The desian process, by definition, 1s a creative activity.
ConJ- ~ite analrsis, a technique for designing modular
prograns, does not replace creativicy; it is meant to channal

creativity in the-right direction. '

Corposnite analysis is a tough formalizatlion of  the design
PLocy:s. In this form, it will probably not strictly apply
to any single design. The designer will have to adapt it,
passage 1it, and compromise it to fit the particular problen
he iz trying to solve. In addition, two people independently
designing the saue program using composite analysis w2ll
probably arrive at two diffcrent modular structuores.

The basis eof composite analysis is that the structure of the
pro ran sheuld reseuble tho structure of tho» problen. Hence,
copposite analrsis involies an analysis of the problem
structure and, in particular, tihe flov of data through the
problem and the transfor:ations that occur on that data.

Note that in the preceding .parag aph I stressed the word
structrce. Cofposite analysis is totally based on structure..
Whei.  using it, do not think in terus of procedure, tioe,
sequénce, uwhich event has to happen first, etc. In other
words, think about what t e progra= has to do; do not think
about when the progran has to do something.

T will describe the steps of composite analysis and then
jillustrate its use in an exaaple. This example will then be
refined in later sections.

Step One

The first step is sketching out a rough picture of the
problew. Repenmber, this sketch should be in functional, not
procedural, terns. .

As an exarple, consider a simple airlines reservation systen.
It is driven by input from remote terminals. The major types
of input arc requests for information (e.g., seats aveilable,
flights), sales of tickets, and passenger check-in's. The
rough structure of this problevae is shown below: '
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Accounts

Receivable
File

Rcad F]ighf
FHcs‘

Update
Flight i*ilos

-’n[l)t;f

T

Transaction

Raturn
F”ghf
Information

Send _Loqd
& Trim
Datq

Note that this diagranp je non-procedural, por instance, op
d Lequest for Seating iafonaation; only a few of the Steps
al'e performed, Also, for a ticket sale, we are ntot concerned
about whethor the ticket g uritten before Or after the
flight file jig Updated,

— o 2L

Identify the external conceptual sireams of data. An
xternal Stream of data ig one  that jig eXternal to the

7 System, 3 s20ceptual stream of data is g Stream of relateq
data that jo independent of any physical input—output device,
For instance, Ye may have several conceptual streaps vCaing
from one input—output device or one Strean coming frop

several input—output devices,

A  good €xanple here is gg, The input Ceader Program may be
reading from g3 physical-input device (e.g., carq Ceadery,
However, there are twg Conceptual streans here, the Jct
Statements ang the "Sysryn (i.e., those recocds follouing a

BD * or pp DATA Jci Statenent) . Since severa} input devices -
€an be active simultaneously, the JCL strean is coming fron
Several sources,

In opur airlines reservation t7stem, the external conceptual
Streams are the input transactions, tickets, flight
information, and load and trim data.

Identify the bzior external conceptuanl streap of data (both
nput anpd output) in the pProblen, Then, Using the diagran of
the problen Structure, determine, for this stream, the points
™ "highest abstraction. :
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B: 'r. assuming that each problen
of data. Any strean
throughout the problen.
reservation system, the
following forus:

For
input

1. spoken cords (fron’ custoner

of data

will have a ‘'"major" strean
usually exists in many fornms
inuvance, in the airlinecs
transaction can exist in the

to clerk)

2. reqéest typed into terminal

3. requést received-in digital form by computer

4. request formatted-into meaningful internal format

The "point of‘highest abetraction" for a stream of data is
the point in the problem structure where that data is
farthes: removed from its physical input or output form yet
is still recognizable as perny that particular streaa of
data. Hence, in the airlines rescervation system, the nost
abstract fornm of the. ipput® transaction stream might be a

validi.y checked input transaction in the proper internal

forma'.

For the wmajor input and

tvo
problem structure be'uyeen these

output
deterzine their points of highest abstraction.
points op the problem structure.

streans, ve
This defines

concoptual

A1l information in the
poyint:;

tvo 15 called

the

AN

Most Abstract
{nput Data

Central
Transform

Maost Abstract
Output Data

At this point, we begin to diagran the progranm structure.




B C D
- o (N our
- | Usually Most Abstract
1 Nothing Input Data
Most Abstract | Most Abstract
2 Input Data Qutput Data
. 3 Maost Abstract Usually
- Qutput Data Nothing

The parameters passed are dependent on the problem, but the
general pattern is shown above. ' E

The next step is to define the functions of the four nmodules
developed in step three. Step four is the most igportant
step in the process, since proper definition of these fouc
modules is vital.

The function of each module should be described in o short,
concise, and specific phrase. Renenber, the function of a4
module is a description of the transforsations that occur
vhen that module is called. It does not necessarily describe
the processing contained wholely within that particular
nodule, With compusite analysis, our objective is to define
wodules which have functional binding. In order to review
some of the do's and don't's, it would be worrhwhile to
reread the scction on module strength. .

When module A is called, the program or system executes.
Hence, the function of module A is equivalent to the problen
being solved. If the problem is "write a FOATRAY compiler®,
then the function of nodule A is "compile FORTRAN progranm®,.

Referring to the diagran, we see that module B's output is
the wmost abstract input data. Hance, module B should be
defined as a functionally bound aodule vhose function
involves obtaining the major stream of data. An exaunple of
a “"typical module B" is "get next valid source statement- in
Polish form.® Becuase module B's function involyvws obtaining
data, ve refer to it as a gource type nmodule.



interfaces, or similar function) can be found, nodify
. the modules to take advantage of bigher fan-in to a
common mudule.

5. When analyzing a subproblem, the source - transform -
. gint  breoakdown is more conplex. The reason is that the
‘‘major conceptual data streao of the subproblem noramally

enters or leaves through the module we are analyzing.
_For 1instance, if we're analyZing a source type mnodule,
the «conceptual Stream in this nubproblen ‘usaally oxits
via this module (i.e., uvhen it returns to its callern).
- Hience, this spurce type nodule may actvally appear to be
a sink type module with respect to this subproblem. The
same applies  to the analysis of a sink type module. A
transform type. codule may act as both the source and
sink with respect to its oun subproblem.

- This leads us to the folloving three guidelines.

6. The subordinates of a sour-e type module are usually one
0L more scirce type modules and a transfore type nodule,
Occasionally, a source type module will have a sink type
module as a subordinate.

7. The subordinates of a sink type module are usually one

- or° more sink type nodules .nd o transforn type module.

Only rarely does a sink type amodule have a source type
module as a subordinate.

8. The subordinates of a transforn type module are wusually
transform type modules. Also, some transforn type
modules will have sink and/or" source type nmodules as
subordinates.

Stopping

Step five is an ~rrative process. Yet, obviously, the

process must eve tuaily terminate.

There are no explicit criteria for stopping the cooposite
anhalysis process. In practice, 1I've found that is '"coges
naturally". VYhen none of the modules in the structure can be -
analyzed further into independent functional subordinate
rodules, then the composite analysis is coaplete.

To better wunderstand the use of conposite analysis, we will
use 1t in an ecxanmple. Assume we have to design a progranm
solving the following problenm:

Design a patient wmonitoring program for a hospital.
Fach patient is monitored by an analog device which

measures factors such as  pulse, teaperature, blood
pressurc, and skin resistance. The Pfoyram should read
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. these factors on a periodic basic (sprcificd for each

Cpaticnt). The progran stores these facte- s in a data
base. For each patient, safe ranges for .acik factor are
specy Lo (e.g., patient X's valid tenpcratire range is
98 to 99.9 degrees). If a factor falls outside of a
patient's  saffe range, or if an analog device fails, the
nirse's station is notified. '

In a real-life caser the prublenm statenent vould contain much
more detail. Hovever, this one is of sufficient detail to
allov us to desicn the structure of the preogir. «. )
The first step 1is to outline the structure of the problen.
This is shown below.

Fin:! Unsoff;
Fuctors

Neotify Nurse

Read Factors Store Factors *

In step two, we identify the external cc'ceptual streans of
data. - In this case, tvo streans are present, factors froo
the aralog device and warnings to the nurse, These also
represent the wmajor input and cutput streams.

The point of highest abstraction of the input strearn is the
point at which a patient's factors are in a form to store in
the data Dboseo. The point of hichest abstiaction of the
output stream iz a list of unsafe factors (if anyj.

- Find Unsafe

DN

Read Factor:
Fc;tors

Most Abstract Central Most Abstract
Input Data - Transform Output Data

We can now begin to design the program's structure,

e
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We will now analyze module
From - the problem statesent,
has three parts:

Y

Find
Hmale

Fucrary

f .
Al

il b

N

Heatify

ale
1 aatnn

L3

T

! Marhing

10hP, PULSE, 8P,
SKINR, PATICHITNUM

TEMP, FULSE, 8P,

List of Linsafe Factor

2 SKINR, PATIENTMNUM Mumes ond Vatues
T ] PATIENTNUM ond Liv .
3 > of Unsafe Facror Names Hothing
and Values
"OBTAIN A PATIENT'S FACTORSY,

ve can deduce that this

h specified periodic intervals)

2. recad the analog device

3. record the factors in the data base
Hence, ¥e arrive at:
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deternine which patient to monitor next (based on

function
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respectively.
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Boving to another part of the structure, we
“FIRD UNSAFE-FACTORS" to arrive at:

IN

analyze Bmodule

our

OBinin

o TERPR, PULSER, |
© Palient's Daterming " PATIENTNUM BPR, SKINGR
if Factor
Safe U ‘f
Ranges s Vnsale _ 12 FACTOR, RANGE UNSAFE
Source Transform ‘
¥e now analyze that last part of the structyre:
Noh'fy h ) N
Station ;
of Unsale
Factors
IN ouT
— - —
Format Virite 13] gt of ot Factar List of Lines
Oulput Line to
Lines Stotion 14 LINE ] Nothing
Transform Sink . A '
The following sets of data are required in the progranm.

Thise sets of data could either be bassed down as

Paranmeters

from module HOUITOR PALIEBHTS Oor else be read from files,

I. '"list of patient uun“ers and their ponitor tipe intervals

2. map of patient numbers to bed nunbers

3. list of patient RuURbers and their safe ranges

The composite analysis of this PIogram is now coaplete. The

conplete
Page. MHote that the design  isntt coaplete
snall flaws will be Corrected in the next secti

e

Structure of the Program is illustrated an the next
yYat.

Several
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DECISION ANALYSIS

According to the overview in the introduction to part TIII,

the =steps following the analysis of the problen statement

are: . .

2. “Review the ‘coapleted structural design, trying to
- baximize module stiongth and minipize coupling.

3. Review the design again, using the quidelines of section
S1X.

These steps should be fairly straightforward, providing that

you understand the” concepts of part II. However, ve will

discuss one part of step three in mpore detail. That is,

assuming  you have di.scovered a scope of effect - scope of

control problen, how do you solve it?

To review, the scope of control of a module is the set of
modules consisting of that wmodule and "all subordinate
rodules. The scope of ecffect of a decision 1is the set of
modules  whose execution 1is’ based. on the results of that
decision. WHe said that the scope of effect should be a
subset  of, or ejual to, the scope of control and, if this is
not the case, we have duplicate decisions asong mnodules and
lover module st.ength.

The cure for scope of effect problems is to redesign that
affected part of the structure, either by nowving the decision
element "up" in the structure to where the scope of effect is
no longer greater than the scope of control, or by taking
those mwmodules that are in the scope of effect but not in the
scope of control and moving them so that they fall within the
scope of control. T '

To illustrate this, let's 1look at part of our patient
monitoring program:

o
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Note that mwmodule ©“READ FACTORS PROH TERHINAL®™ contains a
decision asking “did we successiully read frog the terminal?”
1f the read wasn ¢ successful, ve have to no.ify the nurse's
stati~n and then { nd the next patient to proces:. '

. Modules in the scope of effect of this decision arce marked
yith an X. Hote that the scope of effect is not a subset of
the scope of control. To correct this problen, we have to
take tvo steps. TFirst, ve will move the decisic: up t¢ MRELD
VALID SET OF FACTu 8. He do this by merging UYREAD FACTOLS
FPECIt TERMINALP into its calling module. We nou maks "FINKD
NE..T PATIEW: TO HOHITOR" a suboruinate of "READ VALID SET OF
PLCTORS." Hence, ue have:
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Hence, by slightly altering the .structure and the function of
a few nodules, we have coupletely eliminated the probleun.

There are times iwhen completely eliminating a scope of effect
problen is infeasible or undesirable. In these cases, wve try
to minimize the problem, that is, einimize the diffcrence
Letueen the scope of effe:t and control. i

For instance, this: ‘ is better than this:
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THE DEVELOPHEHNT PROCLSS

Mter the structural design is complete, the next steps in
the developnents of the program are the internal logic design
of oaclh wodule, a second review of the structural desigo,
coding, and then testing.”  Although Composite Design is a
design technology, a few obscrvations abour  the developuent
pracess (design, coding, and testing of each module) can be
nade.s .

The most iwportant consideration in program developrent is
the requirement .for a strategy and discipline. Almost any
stategy or discipline is better tkon none at all  (i.e.,
developing modules at randea).

A second inportant consideration -‘is that the design
(structural and intra-module) should be completed before
coding is started. Because the design process is  an
ite:ative process, coding should not start wuntil the last
desiyn iteration has occurred. Because.design is the most
crucial and important phase of the project cycie, the design
tim. should be lengthened and the coding time should o
shortened. ’

Teo developmeni strateqies that have evolved, ttop-down
develr.pmentt [ 3] and "hottom-up development”, warrant
consideration.

In top-down developrent, coding 1is performed Vtop-down, in
execution sequence®. That is, the module at the top of the
structure is codad first. Then, modules subo.dinate to this
modul- are codel, this collection of rodules 1s tested
togetler, the next level is coitied, and 50 01 . However, the
sequ-nce is not quite this simple, as shown helow.

(=1



Hodule A is coded first. In order to test nodule A, modules
B and € are needed (or else “duczy" modules to sinulate B and
CyY.. However, to test fith B and C, D and E arn needed., This
Presents us with o dileawa bocange it appsars  hat the wvhole
PLogran  must bo codod before ciny part of it is tested. This
ditemna  in sSolved by deviioping  top-dowa  in execution
Segueiee, Bodulesoa aed 8 are coded first (assuning A calls
Bobelove it calls ©). Then A and B are partially tested {the
part of A up to the call of C and -the -part of p up to the
Call _of D). then D is coded and the combination A, B, and D
1s partially tested.  Then E is coded, 4, 8, D and E are
tested, then C is coded, ote,

Fote the following:™

1. The complete tésting of most mnodules is spread out over
a long time “period. For instance, A nmight not be

- conpletely tested until everything else is available.
2. The complete testing of the modules is not. "top-dounn,
For instanze, D nitht be completely tested before A is
completely tested, :

3. The planning and control Jjob can be ‘ceonmplicated. For
instance, knovledge of the execution of the program is
heccssary to deternine the order in wvhich wnmodules are
coded. Also, we have to keep track of how nuch of cach
module has been tes!ed. '

One definite advantage of top-down developrent  is the

resolu ion of module interfaces. If we code A before we code

B, the parascters passed to B arve well defined before we cade

B. If we code B before ve  code A, We nmay have to ke

assumptions about the parameters pussed to B. In ail canes,

this is a real advantaqe of top-down developoent., flovever,
the magnitulde of the advantage is based on the quality of our

original design. If the original design was good (e.g.,

interfaces were Wwell defined), the coder 111 have to make a

small nunber of assunptions conceriiug the interface.

A seccond advantage of top-dovwn development is in the testing

of modules. If we code and test B before A is coded, we may

have to write g "duagpy" nodule to call B in order to test B,

However, depending on the testing environment angd the nature

of wmodule b, this B3y not be a real advan: ge.

1. If an automated testing facility is used such as 0S/vs2
TSO TEST or Vh/370  CHS, the "dunay" npodule is
unnecessary. These facilities allow us to describe the
input parameters to module B and then exccute B,

2. Nodule B may contain conditions that we wish to. test
v“ich  are very difficult to inuvoke through - "nle A,

suappose module B contains code for “unlikely to occur®
situations, such as validity checking the paraseters



passed to it. If A alvays passes valid parancters, we
" cannot ‘test this validity check in module B in a top-

down fashion (e.qg., v . may S.i1l have to write g durnoy

driver to call wodule B, pasuing invalid parameters) .

Botten-tip _Devel: -ant

Like- top-down development, bottor-up developrcent invelves a
structured overlap of ‘coding, ‘utecration, and testing. To
illustrfate thiz, considér the following exaumple.

CA
T

H
IN ouTt
L. o
o . ® ¢
-] -] °

We start by developing the lowest modules (e.g., module J) .
Once J is developed and tested, we have extended the pover of
our "pseudo machine". That is, CALL J (X,y) is now in the
staterent repertoire, along with the stanlard statemi.ats such
as Lh=DB+C. enc#, we could now develop nmodule F with the
knouledge that CALL J is a working statement. To test F, we
include the tested module J. We continue this integrating
and tesiing process until we reach the top.

To illustrate this better, the following page contains a PERT

chart shoviry the bottem-up inplesmcntation of the a'ove
progran. ’

A
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Note that thits process almost oliminatos the traditional unit
tast piocess. A unit test 15 a test of a single module in an
isolated environwent. Bowaevor, in  this process, the only
odules thet are strictly unit tested are the modules with no
subordinates. Modules that have subordinates are not tested
alone; they are testcd wiih their subordinates.

In the previous exanple, module J was tested by itself (unit
testing) . However; module F was not tested by itself; it was
tested by combining it with previcusly tested module J.

In addition, bottom-up development allovs us to perform a
large number of indep. ndent activities in parallel (refet to
the PERT chart). )

You have probably noticed that I am somewhat biased toward
botton~up developwent., To review, the advantages of top-down
development are a reduction 1n the assucptions made abont
interfaces and a potential reduction in the amount of "ducny
dgiver code wraitten for testing. The advantages of bottom-
up development are” ease  tn flanning  and  controlling  the
coding and testing  processes,  conmnpleote testing  of every
module at a single time, and the poiential for performing a
greatcr nusber of development activities in:pirallel.

Perhaps - the conclusive arcument can be determined by the
precence of design changes to the program  duiing its
developnent, Since design changes are moLle exponsive and
usually more sloppy ip parts of the prograwm that are already
coded, we should try to delay the coding of those paris of
the program that are most susceptible to desiyn changes. If
the "bottom" levels of the program are most susceptible to
design change, thin top-down developrent may be advantageous.
If ve suspect tha: the "top" levels are most susceptible to
change, then bottom-up developnent may be the ansver.

The argyuments for and against’  top-down development and
bottom-up development aren't convincing. Erither one ¢an bhe
used to develop a  program designed with Cowmposite Design,
However, 1t 15 1lmportant to choose one or another and to
stick with 1t,

Different programs have different susceptibilitics to design
change. For instance, Wwe can point to a particular program
and estimate that the majority of the design chdanges will
prohably occur in the mwodules toward the bottom of the
structure. Unfortunately, I known of no general
classifications that can be made to determine whether a
progran 1s nmore susceptible to change at the top or at the
bottom. Perhaps until more rescarch is done, the following
guideline can boe used: ‘



Lf you estinate  that design changes  during  the
developnent of your program will primarily occur in
modules toward the hottom of the structure, use top-dowun
development, If you estipate that they will occur
tovard the ton of “*the streature, use bottou-up
developnent, ‘ T :



Part LV RELATIED TORCS

part IV discunses several other agpects of Composite Design.
“geetion ten discusses thoe nanagement of a  progranminyg  project
incorjporating Composite Design., Section eleven relates Composite
bpesici to the virtual storage  environvent and discusses the
physical peckaging of 'mcdules in a paging environment.

Saction teelve suggests. several decirable. attributes of future
computer ~ system (hardware.and software) architecture to enhance
the use of Co.posite Desiqgn. Scction thirteen suqggests sone
docurentation standards to be uscd in des:ribing the output of
the structural design phase.
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10.

Project #aragement

“-Tuwo of the biggest problerns faced by prograsming project

Banagers are a) resource imbalances, because pPrograamning
lesources (e.g., programne. 3) cannot easily be shifted as.und
to mutch the current worklvad and b) inability to measure the
progres:: of a project dus to the lack of spall weasurable
ufits. Composite Design can assist in the solution of these
problens,

Ih'a paper by Rhodé&[?] the author states that the ideal
"work unit" in a programaing project should have the
following characteristics:

firite logical function

defined Std;t and end points
paramcterization

fully t-stable R -
robust

small

He see that the "module" from our Composite Design concapts
meets these criteria.

The output of a Coomposite Design activity is a structuyral
diagram indicating the relationships asong all nmodules, the
faunction of each nodule, and definitions of all interfaces.
If the design is good, the wodules are robust (high strength)
and very independent {low coupling}. Because of these
characteristics, programaer assigneents can  be easily
shifted. Hence, we can shift programmers frow nodule to
module to smooth out the peaks and valleys in resource
requiremnts.  This gives us more flexibility in allocating
manpow¥er to aeet changing onditions.

The fact that a modular program consists of many :imall

modules also enhances this "smoothing"® capabylity,
Furthermore, since we start with a large nunber of sna. :ork
units {nodulasy, more Precise planning of progl .aner

workloads is possible.

The second problem I npentioned vwas our inability to
accurately measure the progress of a project. This problen
i5 usually caused by too few polnt: of weasurement and
ambiguously defined points of nmeasurement. fnvision a
brograr consisting of one large uodule. Checkpoints such as
50 percent code written or 50 percent test cases succuossful
are usually meaningless. First, their Beanings are
intavyreted diff-rently by different people. Secondly,

i1



they're nisleading, since S0 percont code  written does not
ioply that the codang effort is half complete.

The answer to this problem is measuring progress based on a
hunher of gmaller activities (e.qg., ipplementation of modules
in a modular prograg}. T

By uging one of the developnent processes suggested in
scotion nine, we see that the dcvelopuent schedules and
- assignments an be directly related to the structure of the

program {se. the DPERT chart in section nine). Hence, the
structural diagras“produced by the system designers using
Composite Design.. gives the project manager a basic

development plan! o

Estimating -

Another problem facing project mananers is arriving at good
estirmates of the resources required, A wmodular progranm
design makes estimating easier Dbecause it 15 easier to
predict the size of each module or to predict an “average"
rodule size (see referonce 8).°

Khen Composite Design is to be used on a project, its use
should be explicitly recogpized by creoting a step in the
programming process for it. Hence, a step called stiucturai
design  should be identified in the project plan. It should
follow external specification design and precede the logic
design of each individual module, Documentation produced by
this step is ciscussed in section 13,

Othor Yints

Cnce a good modular design for a program has been developed,
it would be wunfortunate to degrade this design when the
progran is modified ~im the future. The proiject manaqer
shounld insure  that all future modifications to the progranm
adhere to the priuciples of Composite Design.

The same applies to  program maintenanceo, When a buy  is
fouud, there is a temptation to find a "quick and divty" fix. -
This tenmptation should be fought, since a "quick and dirty®
fix may fix the currcnt problem, but it may also degrade the
design of the program, resulting in higher future maintenance
and modification costs.

By following one of the development processes described in
section nine, ve see that the iamplementation plan  (internal
medule design, coding, and testing) can be directly derived
from the structural design. By constructing a PERT dragr.-n
frou _the structural design, woe have,the basic implementation
plan. Bu nmatching the PERT chart with the resources ({e.q.,
programpers) avaialble, individual proyrammer assignments and
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schedules <can  be derived.,” MNote that specific individual
assignnents for the inplenentatior phase casnot (and should
not) be nade until the podular design is couplete.
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t1. Modularity and Virtual Storagn

"Thé concept of virtual storage is heralded as a mechanism  to
make the prograwmmer's jol: easiar, since it lessens the
programmer's prob®oms of designing for a particular wmemory
size, pack.ging prograns into overlays, etc. These claims
are 1gertain]y valid. Howevor, tn insuroe adequate
perfoifmance, the programmer oust now worry about the effects
of paging on his program.

Performance in a paging environment is inversely related to

the number of page faults incurred. A page tault is the
interruption that occurs when a reference is made to a page
which is not currently 1in real @memory. Hencre, the

performance minded programmer should atteapt to find an
optimal packaging of hit program and- data, that 1s, a
packaging which minimizes the number of page faults.
Experiments in this arca have shown that pr .per packaging has
resualted in a five-to-one reduction in the nuwmber of page
faults. ) .

Throughout this paper, I have repeatedly warned against
thinking about the procedural aspects of the program. This-
warning must be dropped for this section, because packaging
of a program in a paging environment is entirely a procedural
problem. That is, it is based on the execution

characteristics of the progranm.

To package a proyram in a paging environment, we neacd the
following information:

1. the size of a page (I'm ascuming the system has a single
fixed page size). E ' .

2. the size of each of the modules in the program.
3. a structural diagram of the érogtam;
LR some knowledge of the procedural as;ects of the program,

in particular, the "when" and "why" behind the calls to
each module. ~

the process ue are discussing involves the proper physical
placcnent of modules among pages Wwithin the virtual storage
to minimize page faults., Since packaging is a procedural
problem, and since it requires the output of the design
phase, packaging cannot, and should not, 'be considered during

the design phase. Because 1t requires knowledge of each
module's physical size, packaging cannot normnally be

considered until after the coding phase.
Packaging is primarily an art. I will 1list several

prioritized guidelines for packaging and then . illustiate
their use in an exanmple.

Ch



Priority Oms - Iterations

Grouo togerher nmodules #hici call one another interatively,
For instance, if sodule A iteratively calls nodule B, then A
and B should be grouped together,

N

A

Frobability of execution is .another factor. If A repeatedly
calls B and C, and it repeatedly calls B every time A is
entered but repeatedly culls C only sonetimes, then A grouped
with B is of top priority, and a grouped vith C is of lesser.
priority. '

Grours of mzdules with a high fan-in (number of calling
modules) that are called by the same set of modules should be
group+«d togather, For instance, if A and B8 are called by a
set of modules (C, D, and E), then A and B shculd pe grouped
together,
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Priority Three - Frequency

Group- together those modules which call one another most
fregquently. For instance, in the follecwing diagram, A calls
B every time A is exccuted, A'calls C about fifty percent of
the time, and A& calls D very infrequently,

our first concern should be to group A and B together.
Groupirg A and C (and B) together is of leuser impotrtance,
but de. irable if possible. We probably should avoid grouping
A and b together.

If the above three priorities have been exhausted and space
still exists within the pages to add additional wmodules,
execution sequence should be the mnext consideration. That
is, modnles which will execute sequentially should be grouped
together as much as possible.
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Cosnuider " the above diagram'anq, for this exaample, assuue the
exacution sequence is: E -

ABFBGDBACRAD VE'HE X E KN

Asstme that we can fit & Y five of these modules on ona page
and the other four on a second page.

By scanniag  the execution seqrence aad picking any sequence
~f Firve tuigque rames, wve have the optiusum  solution. For
iastarce, if  ge pick the first five unique names in the
Tegvence, we have A, B, F, G, and C in the first page and D,
, ¥, and I in the socond Page. This yields four page faults
it the execution {(two in the call of D from A and the return
te 4 and two in the call of F from A and the return to M.

In fact, ve can pick any five npodules together in  the
seguence., For instance, starting at position four, we conlad
ick B, G, A, C, and 0 for one page, which sti111 Yields four
wage faults, ‘

IZ ve do this Hi-hout considering the execution sequence, the
page  faults are greater. For instance, putting A, B, c, F,
and B in one Page yields eight page faults, Putting A, B, C,

D, and £ in one page also yields eight Page faults,

T¥rn waen the el :cution Sequence cannot be determined (e.g.,
ducisions  in  the modules alter ity, this technigue can be
used by determining the Rost probable execution sequence,

HeNISIouping Criteria
In addition to the above Prioritized guid-lines for grouping
mocales on Pages, there are several - €ases  vhere we can
Adentify wotules that shouldn't he grouped together. Mot
iweuping  modules of  this cort together will allov us wore
freedon to make additional desirable groupings,




Auvy modvle that is only executed onca  shonldd  be  separated
froo  the other podules, Also, any nmodules that provide
infreccontly used optional functions shosld be separated from
the oworr wodules.

. -

The dlagrawm on the néxt page will be used as an example. The
module sizes are indicated in the lower right hand corners of
each module. Assume, inm this system, that the page size is
1000 bytes. '

The first step is to find priority onc groupings. Exanining
the iterations, we drrive at the following three groups:

(6, D, E, F, 6, H {(p, L} (¢, I, J. K)

The next step is to find priority two groups. HModules Rk, 5,
T, and U meet the criteria, since they are c.lled by a common
set of moduiles. Hence, the single priority two group is (R,
S" T, U)o - N ) —‘_ -

Priority threc groups are now developed. Making a faow

scugptions  about the program, we determine that there are
tvo groups of high frequency calls. They are (R, S, T, U, N,
g, P) -and (P, J).

The fourth prio.ity is exccution sSeguence. Rath.r than
deiernine this 10, ¥we will o-it it and come back to it later
only if the first three priorities are insufficient,

Looking at the first priority one group, (B, D, E, P, G, H),
we showl® stort by packaging these modules together.
However, their combined size is 1250 bytes. HWe have to omit
sorething <o we place B, D, E, F, and if (750 bytes) on " page
1 and G on page 2. The next group is (D, L}. Since D 1is on
page 1, we can include L on page 1 for a total of 800 bytes
on page 1. .

The next priority one group is (¢, I, J, KY. Since they
cannot fit on pages 1 or 2, we put them on pagye 3 (combined
size of 700 bytes).

The only priority two group 1is (R, S5, T, U). Since this
cannot fit on th:» first three pages, wWe place i. on page W
{(now 600 bytes).

There are three priority three groups, (R, S, ¥, 4, N, 0, P}
and (P, J). The first group has a size of 1650, s0 it can't
be placed 1intact on page _U. Since the other group also
contains P, we'll put P and J oh a nev page, page S. The (R,
s, T, U, N, O} group is still too larye {1200 bytcs) so we
nust -remove N o O, If we remove O and put it on page 5,
page 4 now contains 900 bytes and page 5 contains 950 bytes.

ce
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The -two rewmaining aodules are M4 and ¢. Page 2 currently
«contains module G, and  Q and M are conncected to G by
cexécution sequence, so we put M and Q in page Z.

“The packaging 1is:

“Page Modul. s .
o B, Q,.p, F, H, L
2 G, M 0
) 3 C, I, K, J
4 R, s,'-T U, N
5 0, p} J
Ezﬁﬁﬁimgﬂzﬂﬁigﬂ

Now tha' we have dotermined a way of packaging a particulac
pregram, further optivization is probubly worthwhile. The
following procedure 15 sugyested: :

1. Pick ore or more “Ymost probable" executions of the
_prograam. :

2. For these cases, write down the execution sequences Dby
module, :

3. Make an assusption about the nunber of page frames 1in

real storage available to the program. That 15, assume
the program will always .ave X pages 1in r al stor.ge.

4, Walk each of the execution sequences from step two
through the omodules. On  paper (and 1in your npind),
peLforn the paging and cunt -the number of page faults,
You «can eithes  use the paging strateyy of the sy:stenm
that this progoam will execute on  ©orf  assume  a  paging
strategy (e.g., demand pagying with replacenent of the
#least recently used" page).

‘5. ‘Now, make a change to the packaging. For instance, if -
there vwere sonme arbitrary decisions made in the original
packaging, you can change these decisions. Repeat step
four and conpare the results (nuanber of page faults}).

It should be obviocus that this section has described an art,
Jmot  an  exact. science. For a more sohpisticated technique

involving the examination of the re:crence patterns o! a
progran, see the paper by Hatfield and Gerald. [9]
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12. Agreecable Hardwace and Softvarc

In today's- environcent, there are obstacles  to modular
prograss. These obstacles aio in the form oi CPUY
architecture and softuare design {operating systems and
prograraing languages). "

The, linkage dditor is one of the biygest enenies of
modularity. tfost operating systems have a progoam called a
linkage editor... *he linkage -editor combines a group of
nodules into a single named entity called the load nodule.
Hence, the linkage editor is a “demodularizer.,™
Once a module is link edited within a load nodule, the module
loses its identify outside of the lood module. Hence, 1if
rodule A is in load module M, then we cannot call esodule A
from a npodule that is outside of M. This restricts one of
- the busic concepts of Composite Design =-- that a nmclule
should be accessible and usable by a large number of other
modules. ’
The linkaye editor should be eliminated, or, if it is  uged,
we should have only one module per load module,; all linkages
between nodules nust be dynamic (e.g., LIHK facility in 05).
T™he host operating system must provide a fast dynamic linkage
favility. :

nother function of the linkage editor is to resolve external
syrhol references amonyg modules (external coupling). If we
wililtlnate the linkage editor, we also lessen the problea of
cxternal coupling (i.e., the programmer is forced to use
another, hopefully botter, fora of coupling}.

“he operating system and programming languages must onforce
a high degree «f data isolation anong nodules. This includes
such things as allowing no module to modify another podule
and making names defined within one module local to that
nodule.  Mast programming languages do fairly well here but
APL is an exception. APL has a weakness in that names in a
module (function) are global unless explicitly declared as
local. Hence, APL promotes coumon coupling.

Standard linkage conventions must be followed for all
language processors to allow .odules written in different
languages to call one another.

Recursive modules must be supported.

Operating systems  and programming languages nmust further
isolate modules by restricting a nodule's external referonce
to only tlhcse items explicitly declared as input and output,
Yor instance, nos*t languages give too much froedom to nodules
in dealing with their arguments. In the following = .quence

CALL ¥ (A, B, C)



rodule # can nodify A, B, and C, even if A and U ave intended
only as inputs and € 15 the only intended output,
Progromming languages should support the followding:

CALL # LN (A,B) OUT (C)
Cperating systems, pust  provide the necessary storage
protevtion for this, "tkat 1s, So that the only exte nal data
nodule: 8 capn. read ore_ A and B and the only exteinal data
scdule M con modify is C. :

An  arqgument that -is sometimes valid 1is  one concerning
efficiency. 1f intermodule transfers are slow, then a high
degree of modularity may result in a large amount of overhead
in  jwst transferring from module to module. The four
elene . .s of a module call ‘are: :

. transmission of avrguments
2. tran=snission of the return addrecs
3. saving of the calling module's state (e.q., general

registers)
4, allocating of private storage for local variables

In 05, a dynanic module linkage betwev: tvo reentrant modules
takes the following steps:

1. an address vector of the arquments 1is  built in a
ternporary storaye area.

2. CALL is isx . For molules in the same load sodule, a
direct branch 1is use’, For other cases, the LINK
function is used. '

3. The general registers arc saved in a temporary storage
area.
4. A temporary storagye area is obtained (via the GETMALN

function) for local storage and save arcas.

0f these, step four causes the moust ovedlhead. Storage must
be allocated during every CALL and freed during cvery rteturn.
The GETUAIN and FREELAIN functions involve a significant
nuober of machine instructions, in fact, normally more than
the instructions executed in the module itsclf! Operating
systems must ilmprove significantly in this arca in order to
better support modular programs.

A second area requiring further inporvements is step two, the
LINK facility.

Possibly the best ansver to improﬁing module linkage is
hardware assisted linkage. If increased progranm wodularity
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Documentation

Thé- output of the strectural design phase should .bo a) a
descriptic of the structure of the procvram (i.e., who calls
vho) , b) &« description of the inter-nmodule interfaces, and c¢)
a des:ript,.a of cach wrodule - {i.e., its inputs, outputs,
nare,. and function). Earlier scctions sufficiently described
a and” b, and appendix A definus the notution. This seclion
discusses point €, a description of each module.

This section will not discuss the various techniques (natural
language, specification language, grapii~al, etc.) that can
be " used to describe a nmodule. Inst~2d, it discusses the
types of informatien that should be contained in the
specification, '

A module should have-two types of specifications, an external

module specification which describes o. 1y that information

needed by a n..dule that calls this mnodule, and "an internal

module  specificetion  which , describes the . intarnal logic
(operation) of the module., It is important to - distinguish
boetween, and physically se:rafate, the-e two sprcifications
because the interna’ specification can be altered vilhout
affecting the calling npodule but changes to the external
Specification usually require changes to the calling wmodule.

The internal module spcsification is  written during the

implement tion (leveloprent) phase. The externcl moduyle
specifica ion is writte: earlier, near the end of the
structural design phase. In this section, we will only

discuss the external module sjecification.

Tk - externsl rodule specification should deseribe all the
information needed by the calling modnle, and nothing  more.

Hence, this specification should describe the zodule’s name,
inputs, outputs, and function.

jor?]

Hodule HName

This is a description of the name that is used (e.g., in the
CALL statement) to reference the module. Hodule names should
be descriptive of the function performed by the module,

Function

The function performed by the module should be described in
a single sentence and then with an expanded description, if
necessary. The expanded description could be a narrative
description, decision table, graphs, etc. Note that only the
module's function, not its interpal logic or operation,
should be described here. )

{DING PAGE BLANK NOT FILMED
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This 1is a precise description of all input data to the
module. This should inclufe a description of all input
paraseters,  their physical - order, their format (e.g., size
and type (binary, decinmal, character)), and the range of
valid -alues, I

If “the module iS5 ofher than data cdipled, input descriptions
uill ‘e more conplex.

-

This is a precise description of all output data frow the
nodule. This includes” output parameters, their physical
order, format, ranye, and error information {¢.g., return
Tceedes). If different classes of output may be returned, then
the output should be described in terms of "cause and effectt
relati-uships  with the input. Again, if the module is other
than data coupled, output Jescriptions will be-more conplex,

often, a module's specifications are contained  at  the
beginning of the module in a "apdule prologuet, 4 group of
standardized comment statepents. When this occurs, the

prologue should not indicate which nodules call this module.
If the prologue of wodule B states that it is called by
podule A and we later add a nodule C which is to ¢all wmodule
n, we have to alter module B (update its proloegue), which

¥

conflicts with the goals of wmodularity.

kote, however, that although a module's specifications should
not reference the <callinq wmodules, a wmodule's internal
specifications will normally describe any c¢alls to other
sodules frowm this nmodule. Hence, nodule specifications
should only describe processing in that wmodule and anly
subordinate wodules; they should make no reference to any

other module,

7¢
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APPENDIX = NOTATION

Module

Predefined modula
(e.g., pre-existing module ),

M-dule A contains a call to
\ module B, Module B is subordinate

to module A,

A Modules A transfers control {without
return ) to madule B,

A_.“-_ - For exomp'@, XCTL in OS.

Not recemmended,

! Conditional call, Module A .some’r?mes
{not always ) calls medulz B, '




COUSe T - Repatitive call, Module A iterates
- through calls to 8 and C,

Recursive call.
Module A call: Tteslf.

A
<Z Module £ calls module B posting

XY
« £\\\:’ parariet . ¥, Y, «od Z, Xand Y
! are inpul to B; X and Z are outpur fro: B,

A
1 Sama as above.
B J
. IN out
XY %
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The =ierating environmant
(0.g., ojuraiing system),

Madule A transfers conirol (vithout return)
to the operating environment

(e.g., ABEND SVC in OS).

Parallel activation,
A activates B as o para!’ o tosk

{e.g., ATTACH in OS3),

Module B references an externally
declared symbal in module A,

In addition, most combinations of these symbols are valid,

Most of this notation is due to Constantine [4]
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APPENDIX C
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Secking 1o demonstrete increased programmer productivity, o
Junctionul organization of specialists led by o ohicf program-
mer has combined and applivd known techmiques into a tified
methodology.

Combined are o program production library, general-to-detail
implenmeatation, and  structered " provramming. The overall
methaodology s heen uppherl to an information stordge and
retrieval system, . ' :
I;',\‘,r:err'me'r‘qal‘ resules suggest significoatly increased productivity
and decreased svstent integration difficuliies,

Chisl nrogrammer ieam managsment of produsiion
nrogramming

oy T, Saker

Prodiscton progiamming nrojects rodav are often staffad by rel-
SUVETY JULTur prours 5 owili i oSl o TUW Yedis ol BXpedis
ence. This condition 15 prinvirily the rosalt of the rapid develop-
ment of the computer and the burzzaning of ils applications.
Adthoogh understandable, such stafling has at least two negative
effects an the costs of projects. First, the low averags level of
experiznce and knowledge frequently results in less-than-opti-
mum ofiiciency in programming design, coding, and testing. Con-
curreintly, the more experienced programiners, who have both
the tnsight und knowledge needed to improve this situation, are
frequently in second- or third- h,vel management positions where
thay cannot effectively or ef onomlcanly do the requared detailed
work of programming,

B

Another kind of ineffectiveness appears on many projects,
which derives from the typical project structure whercin cach
programamer has compizte responsibility for all aspects of one or
a small set of medules. This means that, in addition to rormal pro-
gramming activities such as design, coding, and unit testing, the
programiner maintains his own decks and listings, punches bis
own cosrections, sets up his own runs, and writes reports on the
status of all aspects of his subsystem. Furthermore, since there
are few if any guidelines (fet alone standards) Yor doing any of
these esseatially clerical tasks, the results are highly individoal-
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ized. This frequently leads to serious problems in subsystem in-
tegration. system testing, decumentation, and inevitubly to u lack
of concentration and a wtneml toss of offectiveness throughout
the project. Because such clerical work is added to that of pro-
gramming. more progranumers are required for a given size sys-

tem thun would be necessary if the propramming and clerical
work were separated, There are also many more opportunities for
misin ‘""':Tuud*n}:, when there is a lsrger numbier of Eille"pCI‘:Oﬂ'll
interfaces, This approach to multipregrammer projects appoars
to have evolved naturaliv. beginning in the days when one-pro-
grammer projects were the rule rether then the exception, With
the intzevering advances in methads end techunology. this is not
a ngcessury, desirable. or efficient way to do programming todqy

H. . Afills hils__stl.ldi{:d the present large, L:ndiﬂ’:?rcmialec!. and
relativelv inexperienced team approach Lo prograniming projects
and sugzeals that it could be supplemented — perhaps cventually
repiaced —hy a smaller, functionally specialized, and skilled
team.' The proposed orpafization is compared with a surgical
team i which chief plogr:'mfncrs are analopous 1o chief sur-
geons, and the chiaf programmer s supported by a team of spe-
cialists f=s in a surgical team) whoese members assist the chief,

rather than write parts of the program independently.

A chief programmer is a senjor fevel programmer Wit is respon-
sible for the detniled developmernt of o propramiiing system.
The chisl programmer produces a critical nuclous of the pro-
grammizg system in {uil, and he specifies and inteprates afl other

progra miz For the system as well. 10 the svstem 18 sulliciently
 monal in functios or small enough, he may produce it €i-
tirely.

Permariznt members of a team consist of the chief propraramer,
his backup programmer, and a programming librarian. The back-
up prozsammer is also a senior-devel programmer. The librarian
may b= either a programmer lechnicien or a sccretary with addi-
tional t=chnical tratning. Depending on the size und character of
the sysiem under development. cther programmers, analysts,
and technicians may be required.

The chi=f programmer, backup programmer, and librarian pro-
dice th= central processing capabilities of the system. This pro-
grammicg nucleus includes job control. linkage -editing, and
some frzction of source-language programming [ur the system—
includinz the exccutive and, usually. the data milnagement sub-

©systems.

Specitic functional capabilities of the system may be provided
by oiher programmers and integrated into the system by the
chief programmer. Functional capabilities mght mvelve very

NO, 12 1972 CHIEF PROGRAMMER TEAM
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complex mathemutical or logicul considerations and require o
viriety of programmers und other specialists (o produce them.
Thus the teum organization directty altucks the problems pre-
viously described, By organizing the team around a skilled and
experienced  programmer who performs critical parts of the
progranming.work, better performance can be expoected. Also. .
because of the sepantion of the clerical and the progranming
activities, fewer progriommers are neaded, and the number of
intertacesqs redvead. The results are move ellicient implementa-
tion and a-more reliable product,

-

Programming for The New York Timey information bank was
selected as a project’suitable for testing the validity of the chief

Cprogrammer team principfes. Since the programming had to

titerface with non-iBM programs and non-isa hardware. this
experiment involved most of the types of problems generally
encountered in large system developimeal. Besides serving as
a proving ground for chiel programmer team opernlionil tech-
nigues, the project sheds {ight on three key questions beaving on
the uiidity ol the approach: {1 Is the teama feasible orpaniza-
tion for production programming?, (2) What are the implications
of the wide deployment of teams?, aad (3) How can a realistic
evolation be made” The main theme of this paper is a discussion
of these guestions. Befuore beginning., however, we present a
technical description of the rroject, which was performe:d under
azontract bebween Tne Mew York Times Company and (he (8M

ral Systens Division.

Infarmation hank system

The heart of the information hank system is a conversational
subsystem that uses a data base consisting of mdexing data, ab-
stracts, and full articles [rom The New York Times and other
perigdicals, Although o primary object of the system is to bring
the clipping fle (morgne) 1o the editoriad stoff through terminals,
the system muay also be mude available to remote users, Thisis a
dedicated, wme-sharing sysicmn that provides decumeant retrieval
services to 64 local terminals GBa 427004506 digital TV display
subsysteins) and up to one hundred twenty ramote lines with
display or typewriter terminals,

" Figure 1 is a diagram of the data flow in the conversntional sub-

system, which occupies a 200 to 240K byte partition ¢f a Sys-
tem/364 (depending on the remote line configuration} under the
Svstem/ 330 Disk Operating System (D0s£3a0). Most of the in-
dexing data and all of the system control data are stored on an
i8n 2314 disk storage Tacility. Abstracts of all articles are stored
on an 18M 2124, The full text of all articles is photographed and
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Fiqure 1 Conversational subsytiem dauta flow
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placed on microficie. &nd is accessible to the system through
four TV cameras contatned in a microfiche retrieval device
ealled the Risan tha! was developed by Fote-Meni. A video
switeh wiows the digitnd TV dispiny canaoies 10 receive either
cenerated characier dawa froin the confral uni or wi-
clo irsaces {rom the Risanr. Users huve manual scan and zoem
contrals to assist in studving articles and can aliernate beiween
abstract and articte viewing throogh interaction with the cpu.

COie

Users scan the data base via a thesairus of all descriptors {index
terms) that have been uscd in indexing the articles. This thesau-
rus containg complele information about cach descriptor, often
inclucing scope noies and suggested cross references. Descrip-
tors of interest may be selected and saved for fater use in com-
posing an inquiry. Experienced users, who are {familiar vath the
thesavrus, may key in precise descriptors directly. When the
descriptor specification is complete, inquirers supply any of the
following known bibliographic data that further limits the range
of each article in which they are interested:

¢ Date or date range

« Publication in which the articles appeared

+  Sources other than staff reporters from which an article has
been prepared ‘

«  Types of article (¢.g., editorial or obituary)

« Articles with specific types ~f illustrations (e.g., maps and
graphs)

no. b+ 1972 CHIEY PROGRAMMER TEAM
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*  Section number where an article was published

*  Pages (e.p.. front-page articles)

= Columns '

. Reha:ivc.ir}}pormnce of the article desired (on an eight-point
scale)

Users nray (urther specify their reteieval by combining tlescrip-
tors that must appear in cligible articles by relating them in AND,
OR. and BT Boolean logic eXpressions. '

The articla search is performed in two phases. An inverted in--
dex derives an initial list of articles tha satisfy the Beolean in-
guiry statement, Arficles on this list are then looked up in a fle
of bibltographic data ard further cuiled on the basis of any other
specified datn. When the search is complete, the inguirer miy
clect to sort the article references into sscending or descending
chronological order heﬁzrc fie Degins viewing,

Because there are only fond cameras available in the RISAR. the
system Hmils article vicwing to reduce contention. Thus the in-
guirer vizws abstracts of the retrieved articles and selects the
most relevant ones for full viewing when o camera becomes
available, Inquirers may also request hard copies of specificd
abstracts and articles. Remaote users cannot view the full articles
directly, The references fn dispiayved abstyacts, howeveor, identi-
fy the corresponding atticles for ¢if-line retrieval from other
sources or throtga the mail

A few oiher sigaiflcant features of the conversational subsystem
may be of interest. 1t incerporates several authorization fentures
that inhibit unauthorized access to the system and (ulfitl the
conditions of copyright faw and other legal agreements, Tnquir-
ers who acud assistance may key a special code and be placed in
keyboard communication with an expert on system files and
operations. This expert may also bromleast messages of genetal
interest to alf users. Several priority catezories exist to allocate
resources to indquirers and to controf responss time, Tn addition
to inguirer facilities, the conversational subsystem aftows index-
ers using the dighal TV terminals to compose and edil indexing
data for articles being entered into the svstem data base.

Figure 2 shows the relaticaship of the conversationad subsystem
to the supporting subsystems. The indexing data previously
mentionad is precessed by the data entry edit subsystem and
produces transactions for entering duta into or modifying the
systzm files, Also preduced s a separate set of transactions tor
preparing a published index. The file maintenance subsystem
modifies the six interrelated fles that constitte the system data
base, and also prepuares file backups. Security data used by the
conversational subsystem to identify users and determine their

. , .
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Figure 2 taformotion bank system
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anthority is prepared by the authorization file subsystem. The
conversational subsystem interacts with wsers by presenting
rmessages on ong of thiree levels ranging from concise to tutori,
and the message fife subsystem prepares and nuuntains the mes-
sage fite. Luring oparation of the conversational subsystem,
uscrs Tnay reguest hard copy of abstracts and/or articles. The
abstracts and the microfiche addresses of the designated articies
arc printed by the deferved print subsystem. The conversational
subsystem also (ransmiis a variety of data on its operation 1o the
log/statistics: file, and the corresponding subsystem, A log con-
taining a summary of operations is printed. Biliing data for sub-
scribers are passed ¢ billing programs wriitern Hy The Times.
"Usage daia are passed back to be added to the ditn base. Usage
statistics are passed to the statistics reporting subsystem, which
produces detailed repoits on overall system uvsage, descriptor
(index term) usape, abstract usage, and full article usage.
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Team organization and meihodo!ogy

The methods (!hcuwcd bt tlm paper have been individualty tried
in other projects. What we have done is 10 inteerate. consis-
tently apply, and evaluote the following four progrunming man-
agement techmquu that constitute the methodology of chief
progmmmur le.lms '

= unctional orpanization

«  Program production library

*  Top-dewn progrimming

o Structored programating
tunciional  Since our-contracts have more legal, finuncial, administrative.
. organization and rc;uoriiniz requitements associnted wish them than interpal
' projects of corresponding size. 1 project manieer coordinates
these activities in all excepl the smallest contracts. Administra-
tive and technical problems arc jointly handled by the ¢hicf pro-
grammer and the project. n-u—mugr::r. thereby permitting the team
and especialiy the chief progranuner to concentrate on the tech-
nical aspects of the project. ' .

A functional organization also segrevates the creative from the

clerical work of programming. Because the clerical work is simi-

lar in all programmiang projects, stuidard proceduces con be ensi-
< LE o

ly crested so that a secretary performs the dutics of PrOLrm

waintenaaes and computer schieduliag,

programs We have developed a progrem libravy system to msalate clerical
praoduction work from programming and theeeby enhance programmer pro-
tibrary  duclivily. The system currently in use is the Programming Pro-
duction Library (pp1). The ppi. shown in Figure 3. inciudes

both machiae and oilice procedures for defining the clerical du-

ties of a programming project. The pPi. procedures promote ef-

ficiency zmd visibility during the program development stages,

The ppL. comprises four parts. The machine-rewdable farernal
Lbrary is a group of sublibraries, ench of which is a data set con-
taining all current project programmiay data. These data may be
source code, relocatable modules, linkape-cditing statements,
object modales, job control statements, or test information, The
status of the internal library is reflected in the human-readable
external library hinders that confain current listings ol ail tibrary

members and archives coasisting of recently supersedad listings,
The sachine procedures consist of standard computer steps for
such procedures as the following:

=  Updating libraries

+  Retrieving medules for compilations and storing results

o Linkage editing of jobs and test runs
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Figure 3 frogramming production library
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o Backing up and restoring libraries:
¢ Producing library status histings

Glice procedures are clarical rulzs used by Hbrarions to pacform
the fuilowing dutias: :

s Accopting divcetione marked in the oxternal Flbrary
e Ulsing machine vrocedures
o Filing updated stutus listiags in the externad library

o Filing and replacing pap

A programiner using the ppi works only with the external ki
brary. Using standard conventions, he enters gircctly into the
external library binders the changes to be made or work to be
done. He then gives these changes te the librarnan, Later he re-
ceiver the updated external library binders, which refisct the
new siatus of the internel library, The externat lirary is always
current and is orpanized to facilitate use by prosrammers. A
chronolagtcal history of recent runs contained in the archive

binders is retained to assist in disastcr recovery. The program-

mers are thus freed from handling decks, filing listings, key-
punching, and spending unnecessary tirme in the machine area.

The ppL procedures are similar to other library mainienance
systems and consist solely of Job Conirol Language (ICL) state-
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Figure 4 Tap-down system develapmant
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ments and standard ut_i]i.ty corttrol statements. 8y combining
standard machine procedures, standurd. office srecedures. and
project libravies, the trained lbrariuns provide a versatile pro-
gramming service that allows a team to make more efizetive use
of its time. The prL also assists in improving productivity and
quality by proviling visibility of the work. thaeby ullowing
i of madiutes thae tev ore
integrating. Such visibility also permits members (o bo certain

of inteilace requivements. The iaternal working &

nuages of a

team are the Code and statements in the Hbraries, miher than a
separate set of documents that lag behind sctund sintus, Pros
grammers read cach uther’s codo in order to communicate defi-
nitions, interfaces, nad details of cperation. Only when a gues-
ticn arises that cannat be resolved by reading code. i it necessary
1o counsult another programmer directly.

The third techrigue implemented and tested is that of top-down
programming. Alihongh most programming sysiem design is
dong from the top down, most implementations are done from
the bottom up. That is, units are typically written and inteprated
into sitbsystems that are in turn integrated at highier and higher
tevels into the final system. The top-down approuch inverts the
order of the development process, Figure 4 depicts the essence

- of the top-down approach. Following system design. »l) joL and

link-edit statements are written together with a huse system, The
second-ievel modules are then written while the base system is
being checked ot with dummy second-level modules and Jum-
my files where necessary. Third-tevel medales are then writtes
while the second-level modules are being integroted with the
base system. This development cycle is repeated for as many
levels as necessary. Even within a module, the top-down ap-
proach is used by writing and running a nucleus of control code
' \
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first. Then functional code is added lo ‘the conlm! cade in an in-
erementat iaahton

Structured programming, ziso used in the information bank pro-
Ject, s o method of programming according to a set of rules tha
enhance & pIUE_”d""I s readahility and mumhm abifity, The rules
are cnmm,oumce of a H[Il!blUIC thecorem in comphter science

described’ by Béhim and Jacopint,” The rules staie that any prop-
el progran-—a progriun with one entry and ons exil-—-can be

written using only the following programming progressions that
are also ilustrated in Figure 5.

A. Seaulence -
B. 1F THEN ELSE
C. DO WHILE

Althouzh these rules may scem restrictive and may reguire a
programmer o exercise ‘more thought when first using them,
several advantages ensue, With the elimination of Go TOs, one
can read u program{rom top to bottom with nojumps and one ¢an
see at a glance the conditions required for medifying a block of
code. Tor the same Teason, tests are easier to specify, Fuither,
the rules assist in allowing a program unit to be wriilen asing the

{op- dml-‘n up*'ouch hv W htirg, Cenlroi statemants first and then

ENC LU;’,}:;S nf emp:y memh:':rs perrmis compilativn and debig
at a much eurlier stage of programmivg. Finally, i meawneful
identifers sed, & progiem becomes self-doonmenting nnd the

nead for lengthy comments and flow charts is reduced,
Conventions to support the use of structured programming are
required. A set of rules has been developed Lo forma! source
code so that indentation corresponds to lngica} depth. H exten-
sive chunge is necessary, a program is available to reformat the
source code.” To make minor changes such as moving some
code a few columnas, a utility program may be writlen or an ex-
isting one moedified. Also, the lengths of individuat blocks of
source code are small to enhance readability and cocourage a
top-down approach. The objective is 1o have no bisck exceed a
single listed page, or about fifty lines, Finally, by extending the
range of structured programmming progressions, efiicizacy of ob-
ject code can be significantly improved, and sowrce code read-
ability 1s not impaired. Thus, iterative DOs with or without a
wiHILE clause and a simulated ALGOL-lke CASE staicment based
on a subscripied GO TO statement and a LABEL AITaY Were per-
mitted in our project.

Structured programming has been described in terms of lan-
guzpes with block structures such as PL/L, ALGOL, 0f JOVIAL, It

is possible to introduce a simulated block structure into other

wo. o 1972 . CHIEF PROGRAMMER TEAM
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JThe team, at this point, reoricated iself fram on o

types ol inguages and then to develop structuring roles for
them also. This has been'done for Svstemi 160 Assewbler Lan-
guage, a fow level b wiigliage, through a set of auicros that intro-
duceand-delimit blocks and provide DO WHILE, 11 THEN EILSE
and CASCtype figures. Further, if the tong idenlifiers permitted
by Assenibler H are used, the sourcecode iseven more readable.

Systenr dovelopment -

This se L’t*nn discrises how the praviensiy doseribed tovhaianes
have been used in develoning 10 - 20 rmarion

was originally stafied wish 4 chic! programmer, o b u,hm nre-
aramner, @ system anstyst {who was also o procmatmer). and a
project manager. Since o project sequirement was Ul the infore-
mation bank operate under the Sysiomd 360 Disk Operating Sys.
tem (DGs/360), the i"_L, Lup or mier pegin develuping a ver-
sion of the ;“rognmumug produciion Bbrary {Ppr) that would
operate under DOs/3aa dnparaliel, the chief programmer and the
sysicm analyst began developing a demited ser of functional
specifications. The fivst product of the femim qu a ook of speci-
ficutions that served as a detailed stateinent of the praject objec-
tives,

Bontl The oo

sl g
into a developmznt group. and o progiammer echaician was
added 1o serve as a ibrurvian. The systeta enalyst bogan deiniied
desiun of system exernals. such xs B, COITUMUNIC-
tton oy, and statistics reports. The chiel promammer snd bick-
Up programmer worked together on designing the various sub-
systems and their interfaces

e

Since the %yutem is heavity ‘file oriented, efficient reirieval and
the r_‘\pn.b:my [ adding tarze volumes of new material daily
were requircmmz{s Tuerefore, the ¢hief and bockun program-
mors indially emphasized fhe development of an intorrelatad sot
of six files that provide the nuumuy filc atiributes, Declura-
tions of structures foc these files were the first members nlaced
in the iibeary. Detailed file maintenanee and vetriova! algorithims
were dcwiopul pefore any furiher design was done,

A substantial amoont of date already ms*u! on nagnetic tape,
Theretore, to begiy building files for debuzzing and testing the
sysiem, it was \lcﬁ{-_m: that the {ile muinicnnwes subsystem be
developed. This subsysten was desivned (0 consist of two R
programns and severn! minor ones. The chief arogrammer aid
backup programmer euch began wark on one of the major pro-
grams., Working i top- down fashicn, control nuclel for each
major program were developed. Functional code was vradunily
added to these nuclei to handle different types of file mainte-
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naace {ransactions until the programs were compleie. The minor
programs were then produced similagly. '

Becawse of the early need for the file maintenance Programs, an
independent accentance test was heid for 1}11‘, subsysten. One of
the functions berformed by the backup programmer wos the

G‘*veiimmml of a test plan that specified d” functiang of the sub-

syslcm :c,o‘_urnn testing and an ordetly seauence for parforming
the iest using actuat data and tansactions. An indication of (i 13
guufity achievable by the chiel programmer team is afforded by
the fact that ko eirors were detected during the subsystem test.
In fact, no~errors huave been detected during liteen maonths of
operaiion suhs;cqv"m 1o the test,

While the file maintenance subsystem was beinn doveloped, the
chief progra mmer and system analyst designed en on-line sys-
tem for lu_ymg and corvecting indexing data destined for infor-
mation bank files 'm:i for The New York Tintes budex. This in-
dexing system becsme thi data eniry subsystem and additions to
the conversational subsystem. The Jrdex had previously been
prepaved by & programining systenv from data obisined by key-

g a_complex free-form indexing language onto paper tape., The
existing lanpuz2ge was, therefore, extended to inciude the fields
needed hy the L()‘]VLT\AHGH?!I subsysiem and formalized by ex-
pressing it in Backus-Naur form. fiecause it was likely that the
e owould be madified o the proiect evelved, we decided
rform the cditmg of indaxing data vsing s, ’hiu.l-lef“ﬂ e li-
nicgues. (Ancther proarammer was added tothe @

tho dailenlry sabsysiein around the syniaxd

langungs

l

After ihe is meintenance subsyvaiem had been delivere d s the
externals of the system specified. the system anwiyst pro-
prammed the authorization file subsystem, the messugs file sub-
system, the lop/statistics file processing subsysiem, and the de-
ferred print subsystem. (Another progranuner was addad, who
wrote the statistics reporting subsystem.)

The chief programmer and backup programmer developed the
conversational subsystem. Apain, opcmiing in top-down fashiom,
first programmed was the nucleus consisting of 4 time-sharing
supervisor and the part of the termina]-hzmd}ing}, package ro-
quired to-support the digital TV terminals. This nucicus was
debupgped with a shmple function module thal eckocd back o a
Cdispluy material that was typed on the keybowgd, After the no-
~cleus was operational, develoepment of the funciions of the re-
trieval system itsell commenced. System functions wers pro-
gramimed in retricval order, so that new functions could be de-
bugoed and tested using cxisting operational fusctions, and an
inguiry could proceed as far as programming existed 1o support
it, All debupging was done in the framewark of the conversa-
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ticnal subsysient itsell, and because of the Gme-shining azpects
of the system, several progranimers could debuy their progeams
simultanecusly. The ability (0 medify tests as resitty were dis-
pliyed at o terminal was helpful in checking out new code. Two
progrdmmers were added 1o the team to s riie fupctionad code, A
third programmer was added to extond she terminal-handling
package tor the 2200 and 2265 display tormisads, and for the 2740
communication terminal. These programaers enpidly acquired
sufficient knowledge of the interfuce with the time-sharing super-
visor (o write Tunctional code despiie their shont participatiion on
the teani, '

CDuring this development process, the tackup progrommer pre-

pared a fest plan for the rest of the sysiem to be used with realis-
tie inquiries for the teat. Althongh some errors were found Jdur-
ing a Bve-week period of tunctional aiad performance tosting, all
were relaiively small, and did aon invelve the basic logic of the
system. Most ercors were found in the functional code that had
been most Tecenily added to the system and had beeit the least
egxercised, The performiance parts of the westing mcasurad both
sustained lond handiing and peak foed Sundiing, In spite of the
fact that the pecformanse fosts were run on a Systemf 360 Maode|
40 with thiree 2314 disk storage fucilities as fles, instead of on ithe
Bysiem/350 Model 30 with seven disk storage fucilitics for
which the perfeimance objeetives bad been developed, perlor-
mance objociives were sucosssfaliy met,

L
Y

A key objective of the chicf programmer team approach was Lo
doemonstente ncreased productivity of the team over an egual
nuimber of conveationally vrpanized pregrammers, This section
discusses datn on the productivity of the tcam and their strateny
for ustng their timd, Typical productivity measures are computed
to fucilitaie comparizon wilth gther projecis. Table | breaksdown
the staff months appiied on the proioct, and Tuble 2 displays mea-
sures of amounts of source vode produced.

Standardizad defnitions have been used in preparng these ta-
bles and schieving comparable measures of productivity. Soprce
lines are gighty-charmsizr records in the Hbrary that ave been
incovporated inte the nformation bank and coasist of the (ollow-
1ng kinds of statements:

o Prograrming langlagse

e Linkage-cditor contiol

= Job contvol

Sonrce coding has beam bronen into the following three levels of
difficulty, swhich are summarized in Table 2: '
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ol Asolysit of piajad stafling by tine and type of work

T

Stefi time
(et nonifis)
T VDU SO -
Wk rvpe T Previeramimer
te a.f:.!ir'f’f' !Im‘};.'r,n Analvst | 2 3 4 5 " Techuicion | Manager  Sec'v i Totel
chuircnmnls 2.5 I.O R, () 05 - - - — - — 12.0
Auslysis -0 L7 ) ’ T ’
,m i idesi 4.0 A 4.5 1.0 - - - - - - 13.5
F1e 14.0 10,0 P30 45 285 3745 - - 648
Docum | hR{ 2.0 4.8 S 02 02 43 03 - - 1.0
Secreturiz i - - - - -~ - - - BE 7.0
Librurian — e - - - - - - - 140 1.5
: T3S 1.0 - — - — - — - 16.5
'-;IJ:-'E-.(J 23.0 27.0 166 47 30 4.0 48 1i 0.0 152.0
) —— i -
s ;
Table 2 tines of source roding by diffjculty and inesl -
 Lével ~
) D{fficiediy High Low . Tl
Hard 5034 - 5034
Stindurd 44247 4513 48760
Fasy 278597 1613 295310
Totel 77178 G146 Bi324
s Epsy roding has faw mt“mv*hom wilhy ather systen eloments;
(Most of the support programs are in ihis caterory.)
¢ Standard coding has some 1nferactions with: oiiier sysiem .
lements, (Exampices are the functionn \...E\‘l*\ of the conversa-
tional suthsystem and the ddir. eniry edit subavsiom.)
o Difficult coding has many inderactions with othwr systen
elements, (This calezoy is lm“uif"i to the contiol elements of
the wnvera-_mcn:ﬁ subsysiern.)
Sourcr coding typos bave been caieporized as one of the feol-
lowinm:
e High- level oo rjmg i 1L COEOL, o8 JCL
o Low-level coding f creoand linksse-
editor "o,.tmi
Tabic 3 presents soma simple massures of programmer p rcd uc-
tivity bzzed on the same coding used for producing Tobles 1 and
2. The first row includes waork donic on unit dezigy, coding, de-
bugging, and acceptance idsting. The sccond row summarizes
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